4,363 research outputs found

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS2re2F+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    Total Curvature of Graphs after Milnor and Euler

    Full text link
    We define a new notion of total curvature, called net total curvature, for finite graphs embedded in Rn, and investigate its properties. Two guiding principles are given by Milnor's way of measuring the local crookedness of a Jordan curve via a Crofton-type formula, and by considering the double cover of a given graph as an Eulerian circuit. The strength of combining these ideas in defining the curvature functional is (1) it allows us to interpret the singular/non-eulidean behavior at the vertices of the graph as a superposition of vertices of a 1-dimensional manifold, and thus (2) one can compute the total curvature for a wide range of graphs by contrasting local and global properties of the graph utilizing the integral geometric representation of the curvature. A collection of results on upper/lower bounds of the total curvature on isotopy/homeomorphism classes of embeddings is presented, which in turn demonstrates the effectiveness of net total curvature as a new functional measuring complexity of spatial graphs in differential-geometric terms.Comment: Most of the results contained in "Total curvature and isotopy of graphs in R3R^3."(arXiv:0806.0406) have been incorporated into the current articl

    Approximation Algorithms for the Capacitated Domination Problem

    Full text link
    We consider the {\em Capacitated Domination} problem, which models a service-requirement assignment scenario and is also a generalization of the well-known {\em Dominating Set} problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service. In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding approximation results to the well-known approximations of the traditional {\em Dominating Set} problem. Together with our previous work, this closes the problem of generally approximating the optimal solution. On the other hand, from the perspective of parameterization, we prove that this problem is {\it W[1]}-hard when parameterized by a structure of the graph called treewidth. Based on this hardness result, we present exact fixed-parameter tractable algorithms when parameterized by treewidth and maximum capacity of the vertices. This algorithm is further extended to obtain pseudo-polynomial time approximation schemes for planar graphs

    Almost-Smooth Histograms and Sliding-Window Graph Algorithms

    Full text link
    We study algorithms for the sliding-window model, an important variant of the data-stream model, in which the goal is to compute some function of a fixed-length suffix of the stream. We extend the smooth-histogram framework of Braverman and Ostrovsky (FOCS 2007) to almost-smooth functions, which includes all subadditive functions. Specifically, we show that if a subadditive function can be (1+ϵ)(1+\epsilon)-approximated in the insertion-only streaming model, then it can be (2+ϵ)(2+\epsilon)-approximated also in the sliding-window model with space complexity larger by factor O(ϵ1logw)O(\epsilon^{-1}\log w), where ww is the window size. We demonstrate how our framework yields new approximation algorithms with relatively little effort for a variety of problems that do not admit the smooth-histogram technique. For example, in the frequency-vector model, a symmetric norm is subadditive and thus we obtain a sliding-window (2+ϵ)(2+\epsilon)-approximation algorithm for it. Another example is for streaming matrices, where we derive a new sliding-window (2+ϵ)(\sqrt{2}+\epsilon)-approximation algorithm for Schatten 44-norm. We then consider graph streams and show that many graph problems are subadditive, including maximum submodular matching, minimum vertex-cover, and maximum kk-cover, thereby deriving sliding-window O(1)O(1)-approximation algorithms for them almost for free (using known insertion-only algorithms). Finally, we design for every d(1,2]d\in (1,2] an artificial function, based on the maximum-matching size, whose almost-smoothness parameter is exactly dd

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure
    corecore