5 research outputs found

    Approximation Algorithms for (S,T)-Connectivity Problems

    Get PDF
    We study a directed network design problem called the kk-(S,T)(S,T)-connectivity problem; we design and analyze approximation algorithms and give hardness results. For each positive integer kk, the minimum cost kk-vertex connected spanning subgraph problem is a special case of the kk-(S,T)(S,T)-connectivity problem. We defer precise statements of the problem and of our results to the introduction. For k=1k=1, we call the problem the (S,T)(S,T)-connectivity problem. We study three variants of the problem: the standard (S,T)(S,T)-connectivity problem, the relaxed (S,T)(S,T)-connectivity problem, and the unrestricted (S,T)(S,T)-connectivity problem. We give hardness results for these three variants. We design a 22-approximation algorithm for the standard (S,T)(S,T)-connectivity problem. We design tight approximation algorithms for the relaxed (S,T)(S,T)-connectivity problem and one of its special cases. For any kk, we give an O(logklogn)O(\log k\log n)-approximation algorithm, where nn denotes the number of vertices. The approximation guarantee almost matches the best approximation guarantee known for the minimum cost kk-vertex connected spanning subgraph problem which is O(logklognnk)O(\log k\log\frac{n}{n-k}) due to Nutov in 2009
    corecore