2,047 research outputs found

    On (t,r) Broadcast Domination Numbers of Grids

    Full text link
    The domination number of a graph G=(V,E)G = (V,E) is the minimum cardinality of any subset S⊂VS \subset V such that every vertex in VV is in SS or adjacent to an element of SS. Finding the domination numbers of mm by nn grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomass\'e. Many variants of domination number on graphs have been defined and studied, but exact values have not yet been obtained for grids. We will define a family of domination theories parameterized by pairs of positive integers (t,r)(t,r) where 1≤r≤t1 \leq r \leq t which generalize domination and distance domination theories for graphs. We call these domination numbers the (t,r)(t,r) broadcast domination numbers. We give the exact values of (t,r)(t,r) broadcast domination numbers for small grids, and we identify upper bounds for the (t,r)(t,r) broadcast domination numbers for large grids and conjecture that these bounds are tight for sufficiently large grids.Comment: 28 pages, 43 figure

    Asymptotically Optimal Bounds for (t,2) Broadcast Domination on Finite Grids

    Get PDF
    Let G=(V,E)G=(V,E) be a graph and t,rt,r be positive integers. The \emph{signal} that a tower vertex TT of signal strength tt supplies to a vertex vv is defined as sig(T,v)=max(t−dist(T,v),0),sig(T,v)=max(t-dist(T,v),0), where dist(T,v)dist(T,v) denotes the distance between the vertices vv and TT. In 2015 Blessing, Insko, Johnson, and Mauretour defined a \emph{(t,r)(t,r) broadcast dominating set}, or simply a \emph{(t,r)(t,r) broadcast}, on GG as a set T⊆V\mathbb{T}\subseteq V such that the sum of all signals received at each vertex v∈Vv \in V from the set of towers T\mathbb{T} is at least rr. The (t,r)(t,r) broadcast domination number of a finite graph GG, denoted γt,r(G)\gamma_{t,r}(G), is the minimum cardinality over all (t,r)(t,r) broadcasts for GG. Recent research has focused on bounding the (t,r)(t,r) broadcast domination number for the m×nm \times n grid graph Gm,nG_{m,n}. In 2014, Grez and Farina bounded the kk-distance domination number for grid graphs, equivalent to bounding γt,1(Gm,n)\gamma_{t,1}(G_{m,n}). In 2015, Blessing et al. established bounds on γ2,2(Gm,n)\gamma_{2,2}(G_{m,n}), γ3,2(Gm,n)\gamma_{3,2}(G_{m,n}), and γ3,3(Gm,n)\gamma_{3,3}(G_{m,n}). In this paper, we take the next step and provide a tight upper bound on γt,2(Gm,n)\gamma_{t,2}(G_{m,n}) for all t>2t>2. We also prove the conjecture of Blessing et al. that their bound on γ3,2(Gm,n)\gamma_{3,2}(G_{m,n}) is tight for large values of mm and nn.Comment: 8 pages, 4 figure

    On the multipacking number of grid graphs

    Full text link
    In 2001, Erwin introduced broadcast domination in graphs. It is a variant of classical domination where selected vertices may have different domination powers. The minimum cost of a dominating broadcast in a graph GG is denoted γb(G)\gamma_b(G). The dual of this problem is called multipacking: a multipacking is a set MM of vertices such that for any vertex vv and any positive integer rr, the ball of radius rr around vv contains at most rr vertices of MM . The maximum size of a multipacking in a graph GG is denoted mp(G). Naturally mp(G) ≤γb(G)\leq \gamma_b(G). Earlier results by Farber and by Lubiw show that broadcast and multipacking numbers are equal for strongly chordal graphs. In this paper, we show that all large grids (height at least 4 and width at least 7), which are far from being chordal, have their broadcast and multipacking numbers equal

    Bounds On (t,r)(t,r) Broadcast Domination of nn-Dimensional Grids

    Full text link
    In this paper, we study at a variant of graph domination known as (t,r)(t, r) broadcast domination, first defined by Blessing, Insko, Johnson, and Mauretour in 2015. In this variant, each broadcast provides t−dt-d reception to each vertex a distance d<td < t from the broadcast. A vertex is considered dominated if it receives rr total reception from all broadcasts. Our main results provide some upper and lower bounds on the density of a (t,r)(t, r) dominating pattern of an infinite grid, as well as methods of computing them. Also, when r≥2r \ge 2 we describe a family of counterexamples to a generalization of Vizing's Conjecture to (t,r)(t,r) broadcast domination.Comment: 15 pages, 4 figure

    Asymptotically Optimal Bounds for (t,2) Broadcast Domination on Finite Grids

    Get PDF
    Let G = (V,E) be a graph and t,r be positive integers. The signal that a tower vertex T of signal strength t supplies to a vertex v is defined as sig(T, v) = max(t − dist(T,v),0), where dist(T,v) denotes the distance between the vertices v and T. In 2015 Blessing, Insko, Johnson, and Mauretour defined a (t, r) broadcast dominating set, or simply a (t, r) broadcast, on G as a set T ⊆ V such that the sum of all signal received at each vertex v ∈ V from the set of towers T is at least r. The (t, r) broadcast domination number of a finite graph G, denoted γt,r(G), is the minimum cardinality over all (t,r) broadcasts for G. Recent research has focused on bounding the (t, r) broadcast domination number for the m×n grid graph Gm,n. In 2014, Grez and Farina bounded the k-distance domination number for grid graphs, equivalent to bounding γt,1(Gm,n). In 2015, Blessing et al. established bounds on γ2,2(Gm,n), γ3,2(Gm,n), and γ3,3(Gm,n). In this paper, we take the next step and provide a tight upper bound on γt,2(Gm,n) for all t \u3e 2. We also prove the conjecture of Blessing et al. that their bound on γ3,2(Gm,n) is tight for large values of m and n

    2-limited broadcast domination in grid graphs

    Full text link
    We establish upper and lower bounds for the 2-limited broadcast domination number of various grid graphs, in particular the Cartesian product of two paths, a path and a cycle, and two cycles. The upper bounds are derived by explicit constructions. The lower bounds are obtained via linear programming duality by finding lower bounds for the fractional 2-limited multipacking numbers of these graphs
    • …
    corecore