research

Asymptotically Optimal Bounds for (t,2) Broadcast Domination on Finite Grids

Abstract

Let G=(V,E)G=(V,E) be a graph and t,rt,r be positive integers. The \emph{signal} that a tower vertex TT of signal strength tt supplies to a vertex vv is defined as sig(T,v)=max(tdist(T,v),0),sig(T,v)=max(t-dist(T,v),0), where dist(T,v)dist(T,v) denotes the distance between the vertices vv and TT. In 2015 Blessing, Insko, Johnson, and Mauretour defined a \emph{(t,r)(t,r) broadcast dominating set}, or simply a \emph{(t,r)(t,r) broadcast}, on GG as a set TV\mathbb{T}\subseteq V such that the sum of all signals received at each vertex vVv \in V from the set of towers T\mathbb{T} is at least rr. The (t,r)(t,r) broadcast domination number of a finite graph GG, denoted γt,r(G)\gamma_{t,r}(G), is the minimum cardinality over all (t,r)(t,r) broadcasts for GG. Recent research has focused on bounding the (t,r)(t,r) broadcast domination number for the m×nm \times n grid graph Gm,nG_{m,n}. In 2014, Grez and Farina bounded the kk-distance domination number for grid graphs, equivalent to bounding γt,1(Gm,n)\gamma_{t,1}(G_{m,n}). In 2015, Blessing et al. established bounds on γ2,2(Gm,n)\gamma_{2,2}(G_{m,n}), γ3,2(Gm,n)\gamma_{3,2}(G_{m,n}), and γ3,3(Gm,n)\gamma_{3,3}(G_{m,n}). In this paper, we take the next step and provide a tight upper bound on γt,2(Gm,n)\gamma_{t,2}(G_{m,n}) for all t>2t>2. We also prove the conjecture of Blessing et al. that their bound on γ3,2(Gm,n)\gamma_{3,2}(G_{m,n}) is tight for large values of mm and nn.Comment: 8 pages, 4 figure

    Similar works