161,877 research outputs found

    (2^n,2^n,2^n,1)-relative difference sets and their representations

    Full text link
    We show that every (2n,2n,2n,1)(2^n,2^n,2^n,1)-relative difference set DD in Z4n\Z_4^n relative to Z2n\Z_2^n can be represented by a polynomial f(x)\in \F_{2^n}[x], where f(x+a)+f(x)+xaf(x+a)+f(x)+xa is a permutation for each nonzero aa. We call such an ff a planar function on \F_{2^n}. The projective plane Π\Pi obtained from DD in the way of Ganley and Spence \cite{ganley_relative_1975} is coordinatized, and we obtain necessary and sufficient conditions of Π\Pi to be a presemifield plane. We also prove that a function ff on \F_{2^n} with exactly two elements in its image set and f(0)=0f(0)=0 is planar, if and only if, f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for any x,y\in\F_{2^n}

    Planar functions over fields of characteristic two

    Full text link
    Classical planar functions are functions from a finite field to itself and give rise to finite projective planes. They exist however only for fields of odd characteristic. We study their natural counterparts in characteristic two, which we also call planar functions. They again give rise to finite projective planes, as recently shown by the second author. We give a characterisation of planar functions in characteristic two in terms of codes over Z4\mathbb{Z}_4. We then specialise to planar monomial functions f(x)=cxtf(x)=cx^t and present constructions and partial results towards their classification. In particular, we show that t=1t=1 is the only odd exponent for which f(x)=cxtf(x)=cx^t is planar (for some nonzero cc) over infinitely many fields. The proof techniques involve methods from algebraic geometry.Comment: 23 pages, minor corrections and simplifications compared to the first versio

    Hadamard partitioned difference families and their descendants

    Get PDF
    If DD is a (4u2,2u2−u,u2−u)(4u^2,2u^2-u,u^2-u) Hadamard difference set (HDS) in GG, then {G,G∖D}\{G,G\setminus D\} is clearly a (4u2,[2u2−u,2u2+u],2u2)(4u^2,[2u^2-u,2u^2+u],2u^2) partitioned difference family (PDF). Any (v,K,λ)(v,K,\lambda)-PDF will be said of Hadamard-type if v=2λv=2\lambda as the one above. We present a doubling construction which, starting from any such PDF, leads to an infinite class of PDFs. As a special consequence, we get a PDF in a group of order 4u2(2n+1)4u^2(2n+1) and three block-sizes 4u2−2u4u^2-2u, 4u24u^2 and 4u2+2u4u^2+2u, whenever we have a (4u2,2u2−u,u2−u)(4u^2,2u^2-u,u^2-u)-HDS and the maximal prime power divisors of 2n+12n+1 are all greater than 4u2+2u4u^2+2u
    • …
    corecore