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Abstract If D is a (4u2, 2u2 − u, u2 − u) Hadamard difference set (HDS) in G, then
{G, G \ D} is clearly a (4u2, [2u2 − u, 2u2 + u], 2u2) partitioned difference family (PDF).
Any (v,K, λ)-PDF will be said a Hadamard PDF if v = 2λ as the one above. We present a
doubling construction which, starting from any Hadamard PDF, leads to an infinite class of
PDFs. As a special consequence, we get a PDF in a group of order 4u2(2n + 1) and three
block-sizes 4u2 − 2u, 4u2 and 4u2 + 2u, whenever we have a (4u2, 2u2 − u, u2 − u)-HDS
and the maximal prime power divisors of 2n + 1 are all greater than 4u2 + 2u.
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1 Introduction

Throughout this note the multiset sum of two multisets X and Y on a set S is the multiset
X � Y where the multiplicity of every element of S is the sum of its multiplicities in X

and Y . The multiset sum of μ copies of a multiset X will be denoted by μX. The multiset
μ1{x1} � . . . � μt {xt } will be denoted by [μ1x1, . . . ,

μt xt ].
Given an additive group G and a multiset X = {x1, . . . , xk} on G, the list of differences

of X is the multiset �X of all possible differences xi − xj with (i, j) an ordered pair of
distinct elements in {1, . . . , k}. More generally, the list of differences of a collection X of
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multisubsets of G is the multiset sum �X :=
⊎

X∈X
�X. Assume that K is the multiset of

sizes of the members of X . The following cases are important:

• �X = λ(G \ H) for a suitable λ and a suitable subgroup H of G. Here one says that
X is a (G,H, K, λ) difference family (DF).

• �X = μG for a suitable μ. Here one says that X is a (G,K,μ) strong difference
family (SDF).

Very often one refers to a (G,H, K, λ)-DF as a (v, h,K, λ) difference family in G rel-
ative to H where v and h denote the orders of G and H , respectively. One speaks of an
ordinary difference family when H = {0}. In this case one simply writes (G,K, λ)-DF or
(v, K, λ)-DF in G.

The members of a DF or SDF are called blocks. It is clear that every block of a DF is a set
while a SDF must have at least one block with repeated elements. A DF or SDF with only
one block is said to be a difference set (DS) or a difference multiset (also called a difference
cover in [1, 14]), respectively. If one writes k instead of K , it means that all blocks have
size k.

Partitioned difference families (PDFs), also known as zero difference balanced functions
(see, e.g., [17, 19]), are (G,K, λ)-DFs whose blocks partitionG. They have been introduced
by Ding and Yin [10] for the construction of optimal constant composition codes. They are
also important from the design theory perspective; for instance, it is shown in [6] that a PDF
with K = [1(k − 1), rk] gives rise to a resolvable 2-design with block size k.

In the class of PDFs we have, in particular, the (G, [ 11, nk], k − 1)-PDFs giving rise
to sharply point transitive near resolvable 2-(kn + 1, k, k − 1) designs. There are many
constructions of PDFs of this kind in the literature. Anyway, as shown in [7], most of them
are encompassed in a unique simple algebraic construction.

In this paper we are interested in (v,K, λ)-PDFs having v = 2λ. The motivation will
be given by our main result: each PDF with this property leads to an infinite class of
PDFs obtainable by means of a new doubling construction. We point out that, so far, the
composition constructions for PDFs essentially made use of difference matrices [6, 13].

Definition 1 A Hadamard PDF is a (G,K, λ)-PDF with |G| = 2λ.

We choose the name “Hadamard” since every Hadamard difference set (HDS) immedi-
ately gives a PDF with the required property. For convenience of the reader we recall that a
HDS is a difference set of parameters (4u2, 2u2 − u, u2 − u) for some u (see, e.g., [12]).

Proposition 1 If D is a HDS in G, then {D, G \ D} is a Hadamard PDF.

Proof It is known and trivial that if D is a (v, k, λ)-DS in G, then {D, G \ D}is a
(v, [k, v−k], v−2k+2λ)-PDF in G. So, in particular, if D is a(4u2, 2u2−u, u2−u)-HDS,
then {D,G \ D} is a (4u2, [2u2 − u, 2u2 + u], 2u2)-PDF in G. The assertion follows.

At the moment to find another class of Hadamard PDFs seems to be quite hard to this
author. Anyway the set of Hadamard PDFs not coming from the above proposition is not
empty. Indeed we have found a (32, [22, 6, 22], 16)-PDF in the non-abelian group G whose
elements are all pairs of the Cartesian product Z4 × Z8 and whose operation law is

(x1, y1) + (x2, y2) = (x1 + x2, 5
x2y1 + y2).
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One can check that the four blocks of the mentioned PDF are the following:

X1 = {(0, 0), (2, 0)}; X2 = {(1, 0), (3, 4)}
X3 = {(0, 1), (0, 3), (1, 2), (1, 5), (1, 6), (3, 3)}; X4 = G \ (X1 ∪ X2 ∪ X3).

2 Hadamard strong difference families

Strong difference families have been formally introduced in [3] but they have been implic-
itly used in many earlier papers. Note that they have no known relation to the “strong
external difference families” very recently introduced in [15], in spite of the misfortune of
inadvertently similar terminology.

Strong difference families might be very useful to construct relative difference families
[4, 5, 8, 9, 14]; in a certain sense they are the “skeleton” of the resulting difference family as
shown in the following construction which is a little bit more general than the “fundamental
construction” in [3].

Theorem 1 Let X = {X1, . . . , Xt } be a (G,K,μ)-SDF. Take a group H and a pair of
positive integers (n, λ) with μn = λ(|H | − 1). Then take a collection B = {B1, . . . , Bt } of
subsets of G × H such that the projection of Bi on G coincides with Xi for i = 1, . . . , t .
We have

�B =
⊎

g∈G

{g} × Lg

for suitable lists Lg of elements of H . Here, by definition of a SDF, every Lg has con-
stant size μ. This is important because it allows for the possible existence of an n-set E of
endomorphisms of H for which we have

⊎

ε∈E

ε(Lg) = λ(H \ {0}) ∀g ∈ G.

If such a set E exists, extend each ε ∈ E to the endomorphism ε̂ of G × H defined by
ε̂(g, h) = (g, ε(h)) for each (g, h) ∈ G × H . Then {̂ε(Bi) | 1 ≤ i ≤ t; ε ∈ E} is a
(G × H, G × {0}, nK, λ)-DF.

The “fundamental construction” in [3] corresponds to the case that H is the additive
group of a finite field Fq and each ε ∈ E is the multiplication by a suitable non-zero element
of the field. Thus, it is in some way related with the “factorization of a group” [16] and,
more generally, with the “multifold factorization of a group” [2, 18]. Indeed the construction
succeeds if there exists E ⊂ F

∗
q such that E · Lg = λ

F
∗
q for every g ∈ G. In most known

applications E is a subgroup of F∗
q and each Lg is the multiset sum of λ complete systems

of representatives for the cosets of E in F
∗
q .

In [3] it was shown how “playing” with some classic difference sets it is possible to
obtain elementary but very useful strong difference families. For instance, it was shown
that if D is a Paley-type difference set in a group G of order 4n − 1 - hence of parameters
(4n − 1, 2n − 1, n − 1) - then 2(G \ D) is a (4n − 1, 4n, 4n) difference multiset. Here we
will do something similar using Hadamard PDFs.

Proposition 2 If X is a Hadamard (G,K, λ)-PDF, then {2X | X ∈ X } is a (G, 2K, 4λ)-
SDF.
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Proof Let m(g) be the multiplicity of g in
⊎

X∈X
�( 2X). We have to prove that m(g) = 4λ

for all g ∈ G. It is quite evident that if X is a subset of G, then �(rX) contains zero exactly
r(r − 1)|X| times and it contains a non-zero element g of G exactly r2λX(g) times where
λX(g) is the multiplicity of g in �X. Applying this to our case we get

m(0) = 2
∑

X∈X
|X| and m(g) = 4

∑

X∈X
λX(g) ∀g ∈ G \ {0}.

Considering that X is a (G,K, λ)-PDF, we have
∑

X∈X |X| = |G| and ∑
X∈X λX(g) = λ.

Also, considering that X is a Hadamard PDF, we have |G| = 2λ. Hence we can write:

m(0) = 2|G| = 4λ and m(g) = 4λ ∀g ∈ G \ {0}.
The assertion follows.

We will refer to the strong difference family constructed in the above proposition as the
Hadamard SDF associated with X .

3 The main construction

We are now ready to state and prove our main result.

Theorem 2 Let D be a Hadamard (G,K, λ)-PDF and let R = (H, +, ·) be a ring with
identity of order 2n + 1 admitting a set Y of units such that:

Y has size equal to the maximum size Kmax of the blocks of D;
every element of �(Y ∪ −Y ) is a unit of R.

Then there exists a (2λ(2n + 1), n(2K) � {2λ}, 2λ)-PDF in G × H .

Proof We get the result by applying Theorem 1 with X the Hadamard (G, 2K, 4λ)-SDF
associated with D. So, if D = {D1, . . . , Dt }, we have X = {X1, . . . , Xt } with Xi = 2Di

for i = 1, . . . , t .
Take any map f : G −→ Y which is injective on each block Di ∈ D. This is possible

since the blocks ofD are disjoint by definition and we have |Y | = Kmax ≥ |Di | for every i.
Now, for i = 1, . . . , t , consider the subset Bi of G × H defined by

Bi =
⋃

d∈Di

{d} × {f (d), −f (d)}.

As prescribed by Theorem 1 the projection of Bi on G coincides with Xi for i = 1, . . . , t .
So we have �{B1, . . . , Bt } = ⊎

g∈G{g} × Lg where each Lg is a list of 4λ elements of H .
Explicitly, these lists are as follows:

L0 = {±2f (d) | d ∈ G};

Lg = {±f (d) ± f (d ′) | (d, d ′) ∈
t⋃

i=1

Di × Di; d − d ′ = g} for g �= 0

with all possible choices of the signs. We notice two things: all elements of these lists
are units in view of the properties of Y ; each Lg is closed under taking opposites (h and
−h have the same multiplicity in Lg for every pair (g, h) ∈ G × H ). Thus we can write
Lg = {1, −1} · L′

g where each L′
g is a list of 2λ units of R.
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For every h ∈ H , let us denote by εh the endomorphism of (H, +) which is the multi-
plication by h in the ring R. Take a complete set S of representatives for the pairs of the
patterned starter1 of (H,+) and consider the set E = {εs | s ∈ S}. We have:

⊎

ε∈E

ε(Lg) =
⊎

s∈S

{s, −s} · L′
g = (H \ {0}) · L′

g = 2λ(H \ {0})

the last equality being true since every element of L′
g is a unit and |L′

g| = 2λ. Keeping the
same notation used in Theorem 1 we conclude that

F := {̂εs(Bi) | 1 ≤ i ≤ t; s ∈ S}
is a (G × H, G × {0}, n(2K), 2λ)-DF. Now note that we have:

⊎

s∈S

ε̂s(Bi) =
⊎

s∈S

⊎

d∈Di

{d} × {sf (d),−sf (d)}

=
⊎

d∈Di

{d} ×
⊎

s∈S

{s,−s} · f (d) =
⊎

d∈Di

{d} × (H \ {0}) = Di × (H \ {0}).

Recalling that the Di’s partition G since D is partitioned, we conclude that the blocks of F
partition G × (H \ {0}) = (G × H) \ (G × {0}).

In order to “complete”F to an ordinary PDF in G×H we need a set of blocks partition-
ing G × {0} whose list of differences gives 2λ times (G \ {0}) × {0}. Such a set is trivially
given by the singleton {G × {0}}. We conclude that

{̂εs(Bi) | 1 ≤ i ≤ t; s ∈ S} ∪ {G × {0}}
is a (2λ(2n + 1), n(2K) � {2λ}, 2λ)-PDF in G × H .

As a corollary we get an infinite class of PDFs applying the above theorem with the use
of the Hadamard PDFs of Proposition 1.

Corollary 1 IfD is (4u2, 2u2−u, u2−u)-HDS in G and the maximal prime power divisors
of 2n + 1 are all greater than 4u2 + 2u, then there exists a

(4u2(2n + 1), [n(4u2 − 2u), 1(4u2), n(4u2 + 2u)], 4u2]-PDF.

Proof Let q1, . . . , qt be the maximal prime power divisors of 2n + 1, assume that each
qi is greater than 4u2 + 2u, and let ρi be a primitive root of Fqi

. Then the assertion will
follow by applying Theorem 2 withD the Hadamard PDF of Proposition 1, with R the ring
Fq1 × · · · × Fqt , and with Y = {(ρj

1 , . . . , ρ
j
t ) | 1 ≤ j ≤ 2u2 + u}.

Applying the above corollary with u = 1, namely using the trivial (4, 1, 0)-HDS, one
obtains a cyclic (8n + 4, [n2, 14, n6], 4)-PDF whenever 2n + 1 is coprime with 15.

It is known that there exists a (16, 6, 2)-HDS in every abelian group G of order 16 except
G = Z16. Then Corollary 1 gives a (400, [1212, 116, 1220], 16)-PDF in G × Z5 × Z5
for any G as above. Note, however, that Theorem 2 cannot produce a PDF with the same
parameters in G × Z25 since a set Y of units of Z25 such that �(Y ∪ −Y ) ⊂ U(Z25) has
size at most 3.

1The patterned starter of an additive group H of odd order is the set of all possible pairs {h,−h} of opposite
elements of H \ {0} (see, e.g., [11]).
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We get another sporadic class of PDFs applying our main theorem with the use of the
(32, [22, 6, 22], 16)-PDF given at the end of the introduction.

Corollary 2 If the maximal prime power divisors of 2n + 1 are all greater than 44, then
there exists a

(64n + 32, [ 2n4, n12, 132, n44], 32)-PDF.

The first value of n for which the above corollary can be applied is 23. In this way one
gets a (1504, [464, 2312, 132, 2344], 32)-PDF.
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