22,293 research outputs found

    Universal long-wavelength nonlinear optical response of noble gases

    Full text link
    We demonstrate numerically that the long-wavelength nonlinear dipole moment and ionization rate versus electric field strength FF for different noble gases can be scaled onto each other, revealing universal functions that characterize the form of the nonlinear response. We elucidate the physical origin of the universality by using a metastable state analysis of the light-atom interaction in combination with a scaling analysis. Our results also provide a powerful new means of characterizing the nonlinear response in the mid-infrared and long-wave infrared for optical filamentation studies.Comment: 8 pages, 6 figure

    Refining structures against reflection rank: an alternative metric for electron crystallography.

    Get PDF
    A new metric is proposed to improve the fidelity of structures refined against precession electron diffraction data. The inherent dynamical nature of electron diffraction ensures that direct refinement of recorded intensities against structure-factor amplitudes can be prone to systematic errors. Here it is shown that the relative intensity of precessed reflections, their rank, can be used as an alternative metric for refinement. Experimental data from erbium pyrogermanate show that applying precession reduces the dynamical transfer of intensity between reflections and hence stabilizes their rank, enabling accurate and reliable structural refinements. This approach is then applied successfully to an unknown structure of an oxygen-deficient bismuth manganite resulting in a refined structural model that is similar to a calcium analogue.The authors thank the EPSRC for financial support through grant number HO1771

    The limitations of Slater's element-dependent exchange functional from analytic density functional theory

    Full text link
    Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density and the one body effective potential of density functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method,where variationality then refers to the error in each two electron integral and not to the total energy. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in the Slater's Xalpha method and permits an arbitrary scaling of the Slater-Gaspar-Kohn-Sham exchange-correlation potential around each atom in the system. Of several ways of choosing the scaling factors (Slater's exchange parameters), two most obvious are the Hartree-Fock (HF), alpha_HF, values and the exact atomic, alpha_EA, values. The performance of this simple analytic model with both sets for atomization energies of G2 set of 148 molecules is better than the local density approximation or the HF theory, although the errors in atomization energy are larger than the target chemical accuracy. To improve peformance for atomization energies, the SR method is reparametrized to give atomization energies of 148 molecules to be comparbale to those obtained by one of the most widely used generalized gradient approximations. The mean absolute error in ionization potentials of 49 atoms and molecules is about 0.5 eV and that in bond distances of 27 molecules is about 0.02 Angstrom. The overall good performance of the computationally efficient SR method using any reasonable set of alpha values makes it a promising method for study of large systems.Comment: 33 pages, Uses RevTex, to appear in The Journal of Chemical Physic

    A novel procedure for fast surface structural analysis based on LEED intensity data

    Get PDF
    By evaluating LEED intensities from different diffraction beams taken only at discrete energy intervals (which may be as large as 15ā€“20 eV) the same degree of reliability in surface structure determination can be reached as with the conventional techniques based on analysis of continuous I/V-spectra. The minimum of the corresponding R-factor can be found by a least-squares fit method, as will be exemplified with a system in which 8 structural parameters were subject to simultaneous refinement

    Spectral modeling of type II supernovae. I. Dilution factors

    Full text link
    We present substantial extensions to the Monte Carlo radiative transfer code TARDIS to perform spectral synthesis for type II supernovae. By incorporating a non-LTE ionization and excitation treatment for hydrogen, a full account of free-free and bound-free processes, a self-consistent determination of the thermal state and by improving the handling of relativistic effects, the improved code version includes the necessary physics to perform spectral synthesis for type II supernovae to high precision as required for the reliable inference of supernova properties. We demonstrate the capabilities of the extended version of TARDIS by calculating synthetic spectra for the prototypical type II supernova SN1999em and by deriving a new and independent set of dilution factors for the expanding photosphere method. We have investigated in detail the dependence of the dilution factors on photospheric properties and, for the first time, on changes in metallicity. We also compare our results with two previously published sets of dilution factors by Eastman et al. (1996) and by Dessart & Hillier (2005), and discuss the potential sources of the discrepancies between studies.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in A&

    MicroED data collection and processing.

    Get PDF
    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges

    Duo: a general program for calculating spectra of diatomic molecules

    Get PDF
    Duo is a general, user-friendly program for computing rotational, rovibrational and rovibronic spectra of diatomic molecules. Duo solves the Schr\"{o}dinger equation for the motion of the nuclei not only for the simple case of uncoupled, isolated electronic states (typical for the ground state of closed-shell diatomics) but also for the general case of an arbitrary number and type of couplings between electronic states (typical for open-shell diatomics and excited states). Possible couplings include spin-orbit, angular momenta, spin-rotational and spin-spin. Corrections due to non-adiabatic effects can be accounted for by introducing the relevant couplings using so-called Born-Oppenheimer breakdown curves. Duo requires user-specified potential energy curves and, if relevant, dipole moment, coupling and correction curves. From these it computes energy levels, line positions and line intensities. Several analytic forms plus interpolation and extrapolation options are available for representation of the curves. Duo can refine potential energy and coupling curves to best reproduce reference data such as experimental energy levels or line positions. Duo is provided as a Fortran 2003 program and has been tested under a variety of operating systems
    • ā€¦
    corecore