95 research outputs found

    A 4WD Omnidirectional Mobile Platform and its Application to Wheelchairs

    Get PDF

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Master of Science

    Get PDF
    thesisIncreased demand for powered wheelchairs and their inherent mobility limitations have prompted the development of omnidirectional wheelchairs. These wheelchairs provide improved mobility in confined spaces, but can be more difficult to control and impact the ability of the user to embody the wheelchair. We hypothesize that control and embodiment of omnidirectional wheelchairs can be improved by providing intuitive control with three degree of freedom (3-DOF) haptic feedback that directly corresponds to the degrees of freedom of an omnidirectional wheelchair. This thesis introduces a novel 3-DOF Haptic Joystick designed for the purpose of controlling omnidirectional wheelchairs. When coupled with range finders, it is able to provide the user with feedback that improves the operator's awareness of the area surrounding the vehicle and assists the driver in obstacle avoidance. The haptic controller design and a stability analysis of the coupled wheelchair joystick systems are presented. Experimental results from the coupled systems validate the ability of the controller to influence the trajectory of the wheelchair and assist in obstacle avoidance

    Master of Science

    Get PDF
    thesisThe objective of this research is to improve the ability of a human operator to drive an omnidirectional robot by using omnidirectional force-feedback. Omnidirectional vehicles offer improved mobility over conventional vehicles and can potentially benefit people requiring motorized transportation and industries where vehicles must operate in confined spaces. However, omnidirectional vehicles require more skill to control due to the additional degrees of freedom inherent in the vehicle’s design. We hypothesize that providing force-feedback to the driver through an omnidirectional joystick will allow the robot to assist the driver in navigating and avoiding collisions with obstacles in a manner that is natural to the operator. This research is the first attempt to use true omnidirectional 3-DOF (degree of freedom) force-feedback to provide navigational assistance for a human to drive an omnidirectional vehicle. While 2-DOF force-feedback has been used in a limited capacity for obstacle avoidance on omnidirectional vehicles, this is the first study to include a third rotational axis of force-feedback and use it to guide a driver along planar collision-avoiding trajectories with a natural coordination of orientation. Unique intellectual merits put forth by this research include use of a novel omnidirectional haptic device and force-feedback strategies to guide operators and experiments to quantify the ability of force-feedback to improve omnidirectional driving performance and driver experience in a real time scenario

    The Development of the Omnidirectional Mobile Home Care Robot

    Get PDF
    • …
    corecore