9 research outputs found

    Adopting multiview pixel mapping for enhancing quality of holoscopic 3D scene in parallax barriers based holoscopic 3D displays

    Get PDF
    The Autostereoscopic multiview 3D Display is robustly developed and widely available in commercial markets. Excellent improvements are made using pixel mapping techniques and achieved an acceptable 3D resolution with balanced pixel aspect ratio in lens array technology. This paper proposes adopting multiview pixel mapping for enhancing quality constructed holoscopic 3D scene in parallax barriers based holoscopic 3D displays achieving great results. The Holoscopic imaging technology mimics the imaging system of insects, such as the fly, utilizing a single camera, equipped with a large number of micro-lenses, to capture a scene, offering rich parallax information and enhanced 3D feeling without the need of wearing specific eyewear. In addition pixel mapping and holoscopic 3D rendering tools are developed including a custom built holoscopic 3D displays to test the proposed method and carry out a like-to-like comparison.This work has been supported by European Commission under Grant FP7-ICT-2009-4 (3DVIVANT). The authors wish to ex-press their gratitude and thanks for the support given throughout the project

    3D Depth Measurement for Holoscopic 3D Imaging System

    Get PDF
    Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms

    Omnidirectional Holoscopic 3D content generation using dual orthographic projection

    No full text
    In recent years there has been a considerable amount of development work been made in the area of Three-Dimensional (3D) imaging systems and displays. Such systems have attracted the attention and have been widely consumed by both home and professional users in sectors such as entertainment and medicine. However, computer generated 3D content remains a challenge as the 3D scene construction requires contributions from thousands of micro images “also known as elemental images”. Rendering microlens images is very time-consuming because each microlens image is rendered by a perspective or orthographic pinhole camera in a computer generated environment. In this paper we propose and present the development of a new method to simplify and speed-up the rendering process in computer graphics. We also describe omnidirectional 3D image recoding using a two-layer orthographic camera. Results show that it's rendering performance makes it an ideal candidate for real-time/interactive 3D content visualization application(s)
    corecore