539 research outputs found

    Prediction-based control of linear input-delay system subject to state-dependent state delay – Application to suppression of mechanical vibrations in drilling

    No full text
    International audienceIn this paper, we consider linear dynamics subject to a distributed state-dependent delay and a pointwise input-delay. We propose a prediction-based controller which exponentially stabilizes the plant. The controller design is based on a backstepping approach where delays are reformulated as hyperbolic transport PDEs. Infinity-norm stability analysis of the corresponding closed-loop system is addressed. We show that this result is of interest to suppress mechanical vibrations arising in drilling facilities, which have been attributed recently to a coupling between torsional and vertical displacement involving an implicit state delay equation. Numerical simulations illustrate the merits of our controller in this context

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Regulation of inhomogeneous drilling model with a P-I controller

    Get PDF
    International audienceIn this paper, we demonstrate that a Proportional Integral controller allows the regulation of the angular velocity of a drill-string despite unknown frictional torque and measuring only the angular velocity at the surface. Our model is an one dimensional damped inhomogeneous wave equation subject to an unknown dynamic at one side while the control and the measurement are in the other side. After writing this system of balance laws into the Riemann coordinates, we design a Lyapunov functional to prove the exponential stability of the closed-loop and show how it implies the regulation of the angular velocity

    Improving Energy Efficiency and Motion Control in Load-Carrying Applications using Self-Contained Cylinders

    Get PDF
    Because of an increasing focus on environmental impact, including CO2 emissions and fluid spill pollution, inefficient hydraulic systems are being replaced by more environmentally friendly alternatives in several industries. For instance, in some offshore applications that have multiple diesel generators continuously running to produce electricity, all hydraulic rotating actuators supplied from a central hydraulic power unit have been replaced with AC induction motors containing a variable frequency drive and gearbox. However, hydraulic linear actuators are still needed in most load-carrying applications mainly because of their high reliability associated with external impact shocks. Moreover, their force capacity is higher than that of their linear electromechanical counterparts. Valve-controlled linear actuators (cylinders) supplied from a centralized hydraulic power unit are standard in offshore load-carrying applications. In addition to the advantages mentioned above of hydraulic linear actuators, they have, nevertheless, a number of important drawbacks, which include: 1) a high level of energy consumption due to significant power losses caused by flow throttling in both the pipelines and valves, 2) reduced motion performance due to the influence of load-holding valves, 3) high CO2 emissions and fuel costs related to the diesel generator that supplies electricity to the hydraulic power unit, 4) significant potential for hydraulic fluid leakage because of many leakage points, 5) demanding efforts with respect to installation and maintenance, as well as 6) costly piping due to the centralized hydraulic power supply. The work presented in this dissertation and the appended papers are devoted to replacing inefficient hydraulic linear actuation systems traditionally used in offshore load-carrying applications with more environmentally friendly solutions. Two alternative technologies are identified, namely electro-mechanical and electro-hydraulic self-contained cylinders. The feasibility of replacing conventional valve-controlled cylinders with self-contained cylinder concepts is investigated in two relevant case studies.publishedVersio

    Delay-robust stabilization of an n + m hyperbolic PDE-ODE system

    Get PDF
    International audienceIn this paper, we study the problem of stabilizing a linear ordinary differential equation through a system of an n + m (hetero-directional) coupled hyperbolic equations in the actuating path. The method relies on the use of a backstepping transform to construct a first feedback to tackle in-domain couplings present in the PDE system and then on a predictive tracking controller used to stabilize the ODE. The proposed control law is robust with respect to small delays in the control signal

    Performing heavy transfers for offshore wind maintenance

    Get PDF
    As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work.As offshore wind farms become larger and further from the shore, there are strong economic and climate incentives to perform transfers required for operations and maintenance from floating vessels, rather than employing expensive and slow jack up rigs. However, successful transfers of heavy and sensitive equipment from a floating vessel (in all but benign sea/wind conditions) are heavily dependent on multiple degrees of freedom, high performance control. This project aims to bring a novel modelling and simulation methodology in Simulink that could be used to assess offshore wind installation and maintenance procedures. More specifically, the goal is to demonstrate that a crane prototype assumed to be located on a floating ship can transfer loads of hundreds of tons onto a fixed platform. Furthermore, this process should be completed with good precision and minimal impact force during equipment loading onto the stand. This problem has not yet been answered in research, with the only relevant patent in the field being the Ampelmann platform, a motionless bridge allowing technicians to access the offshore turbine. The first main contribution to knowledge of this thesis was the design of a 90 m crane that could handle a 660 tons load. This thesis presents a procedure, based on both mechanical/hydraulics design as well as empirical findings, which could be re-used for scaling the crane model to a more realistic dimension. It is worth noting that the goal here was to assess whether a realistically weighing piece of equipment could be stably handled, while the actual size of the crane was deemed unimportant. Another missing gap in literature this project wanted to fill was achieving active motion compensation for a larger scale system such as the current one. This refers to balancing out the base motions on multiple axes, so the payload can be moved on a given trajectory unaffected by them. Currently, research in the field mainly consists of crane mechanisms that feature active heave compensation, which only refers to the vertical axis. Hence, two control design methods were employed to assess the viability of heavy payload positioning from floating vessels through the development of a simulation approach using Simulink. The crane prototype was designed and modelled to operate under simulated vessel motions given by sea states with a significant wave height of 5 m and maximum wave frequency of 1 rad/s. Then, traditional control (feedback and feedforward) was designed to achieve active motion compensation with steady-state position errors under 20 cm. A second controller architecture was then designed/implemented as a comparison basis for the first one, with the aim being to find the most robust solution of the two. The nonlinear generalised minimum variance (NGMV) control algorithm was chosen for control design in this application. Due to its ability to compensate for significant system nonlinearities and the ease of implementation, NGMV was a good candidate for the task at hand. Tuning controller parameters to stabilize the system could also be based on the previously determined traditional control solutions. An investigation of controllers’ robustness against model mismatch was carried out by introducing various levels of uncertainty which influence actuators’ natural frequency to assess system sensitivity. The outcome of the investigation determined that traditional and NGMV controllers provided comparable regulating performance in terms of reference tracking and disturbance rejection, for the nominal case. This confirmed the assertion that the PID-based NGMV weightings selection is a useful starting point for controller tuning. Increasing the mismatch between the nominal system based on which the controllers’ were designed and the actual plant showed that the traditional control was marginally more robust in this application. The final contribution to knowledge this thesis aimed to bring was minimising the impact force during load placement on a fixed and rigid platform. To that end, the contact forces between the payload and a platform were first successfully modelled and measured. A switching algorithm between position and force control was then developed based on a methodology found in literature but on a microscopic scale project. To execute smooth load placement, an automated hybrid force/position control scheme was implemented. The proposed algorithm enabled position control on x and y axes, while minimising impact forces on the z-axis. Unfortunately, preliminary findings showed that there is still work to be done to claim any success in this regard. However, the author hopes this offers a good starting point for future work

    Using Digital Hydraulics in Secondary Control of Motor Drive

    Get PDF
    Due to the increased focus on pollution and global warming, there is a demand for energy efficient systems. This also applies to the offshore oil and gas industry. Normally used hydraulic systems tend to suffer from low energy efficiency, especially when operating with part loads. In the last decades, a new pump and motor technology has experienced increased interest due to the potential of high energy efficiency in a wide range of operation conditions. This new technology is called digital displacement machine technology. Nowadays, there is a desire from the offshore oil and gas industry to use this digital displacement machine technology to design highly efficient hydraulic winch drive systems. The main objectives of the work presented in this thesis are to design a controller for a digital displacement winch drive system and evaluate its control performance. The design of a controller is one part of the work needed to realizing a winch drive system with digital displacement machines. A winch with a lifting capacity of 20000 kg and a drum capacity of 3600 m of wire rope is used as a case study. Digital displacement machines have strict requirements for the on/off valves used to control each cylinder chamber. It is important to activate the valves at optimal times to ensure operation with high energy efficiency and low pressure and flow peaks. Only a small mistiming of the valves will affect the performance of the digital displacement machine significantly. One of the first contributions presented in this thesis is a method for defining how early or late the valves can be timed without reducing the energy efficiency significantly. The control of digital displacement machines is complicated and non-conventional. Each cylinder can be controlled individually and multiple displacement strategies can be used to achieve the same displacement. Each displacement strategy has its dynamic response characteristics and energy efficiency characteristics. The dynamic response characteristics of the drive system are highly relevant when designing control systems. Therefore, in addition to the conventional classical controller, also a suitable displacement strategy must be designed. Designing controllers for digital displacement machines are therefore more complex than designing controllers for conventional hydraulic machines. One of the main focuses of this project has been to analyze the transient and steady state response characteristics of different displacement strategies. In all, three displacement strategies are examined: full stroke displacement strategy, partial stroke displacement strategy and sequential partial stroke displacement strategy. Also, during this work, a new version of the partial stroke displacement strategy has been developed and included in the dynamic response analysis. The dynamic response analysis is a simulation study, where the simulation model is experimentally validated. The experimental work is conducted on a prototype of a single cylinder digital displacement machine. The prototype consists of a five cylinder radial piston motor where one cylinder is modified to operate with the digital displacement technology. The rest of the cylinders are not changed and not used. In addition to validating the simulation model, the prototype is used to test all of the analyzed displacement strategies in low speed operation. The results from the dynamic response analysis are used to select the displacement strategy that is most suited for use in a winch drive system. Then, controllers for the digital displacement winch drive system are developed. The main focus in the control design phase is not to design a new type of controller but to examine already developed controllers and fit them to a winch system driven by digital displacement machines. In the end, the simulation results of the designed controllers are shown and the results are discussed. The simulation results show that digital displacement machines can be used in winch drive systems and achieve both high motion control performance and wire tension control performance.publishedVersio
    • 

    corecore