2 research outputs found

    Design of Multi Agent Based Crowd Injury Model

    Get PDF
    A major concern of many government agencies is to predict and control the behavior of crowds in different situations. Many times such gatherings are legal, legitimate, and peaceful. But there are times when they can turn violent, run out of control, result in material damages and even casualties. It then becomes the duty of governments to bring them under control using a variety of techniques, including non-lethal and lethal weapons, if necessary. In order to aid decision makers on the course of action in crowd control, there are modeling and simulation tools that can provide guidelines by giving programmed rules to computer animated characters and to observe behaviors over time in appropriate scenarios. A crowd is a group of people attending a public gathering, with some joint purpose, such as protesting government or celebrating an event. In some countries these kinds of activities are the only way to express public\u27s displeasure with their governments. The governments\u27 reactions to such activities may or may not be tolerant. For these reasons, such situations must be eliminated by recognizing when and how they occur and then providing guidelines to mitigate them. Police or military forces use non-lethal weapons (NLWs), such as plastic bullets or clubs, to accomplish their job. In order to simulate the results of such actions in a computer, there is a need to determine the physical effects of NLWs over the individuals in the crowd. In this dissertation, a fuzzy logic based crowd injury model for determining the physical effects of NLWs is proposed. Fuzzy logic concepts can be applied to a problem by using linguistic rules, which are determined by problem domain experts. In this case, a group of police and military officers were consulted for a set of injury model rules and those rules were then included in the simulation platform. As a proof of concept, a prototype system was implemented using the Repast Simphony agent based simulation toolkit. Simulation results illustrated the effectiveness of the simulation framework

    Limitations Of Micro And Macro Solutions To The Simulation Interoperability Challenge: An Ease Case Study

    Get PDF
    This thesis explored the history of military simulations and linked it to the current challenges of interoperability. The research illustrated the challenge of interoperability in integrating different networks, databases, standards, and interfaces and how it results in U.S. Army organizations constantly spending time and money to create and implement irreproducible Live, Virtual, and Constructive (LVC) integrating architectures to accomplish comparable tasks. Although the U.S. Army has made advancements in interoperability, it has struggled with this challenge since the early 1990s. These improvements have been inadequate due to evolving and growing needs of the user coupled with the technical complexities of interoperating legacy systems with emergent systems arising from advances in technology. To better understand the impact of the continued evolution of simulations, this paper mapped Maslow\u27s Hierarchy of Needs with Tolk\u27s Levels of Conceptual Interoperability Model (LCIM). This mapping illustrated a common relationship in both the Hierarchy of Needs and the LCIM model depicting that each level increases with complexity and the proceeding lower level must first be achieved prior to reaching the next. Understanding the continuum of complexity of interoperability, as requirements or needs, helped to determine why the previous funding and technical efforts have been inadequate in mitigating the interoperability challenges within U.S. Army simulations. As the U.S. Army\u27s simulation programs continue to evolve while the military and contractor personnel turnover rate remains near constant, a method of capturing and passing on the tacit knowledge from one personnel staffing life cycle to the next must be developed in order to economically and quickly reproduce complex simulation events. This thesis explored a potential solution to this challenge, the Executable Architecture Systems Engineering (EASE) research project managed by the U.S. Army’s Simulation and Training Technology Center in the Army Research Laboratory within the Research, Development and Engineering Command. However, there are two main drawbacks to EASE; it iv is still in the prototype stage and has not been fully tested and evaluated as a simulation tool within the community of practice. In order to determine if EASE has the potential to reduce the micro as well as macro interoperability, an EASE experiment was conducted as part of this thesis. The following three alternative hypothesis were developed, tested, and accepted as a result of the research for this thesis: Ha1 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army technical solution to help mitigate the M&S interoperability challenge. Ha2 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army managerial solution to help mitigate the M&S interoperability challenge. Ha3 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army knowledge management solution to help mitigate the M&S interoperability challenge. To conduct this experiment, eleven participants representing ten different organizations across the three M&S Domains were selected to test EASE using a modified Technology Acceptance Model (TAM) approach developed by Davis. Indexes were created from the participants’ responses to include both the quality of participants and research questions. The Cronbach Alpha Test for reliability was used to test the reliability of the adapted TAM. The Wilcoxon Signed Ranked test provided the statistical analysis that formed the basis of the research; that determined the EASE project has the potential to help mitigate the interoperability challenges in the U.S. Army\u27s M&S domains
    corecore