12 research outputs found

    Offline EEG-based driver drowsiness estimation using enhanced batch-mode active learning (EBMAL) for regression

    Full text link
    © 2016 IEEE. There are many important regression problems in real-world brain-computer interface (BCI) applications, e.g., driver drowsiness estimation from EEG signals. This paper considers offline analysis: given a pool of unlabeled EEG epochs recorded during driving, how do we optimally select a small number of them to label so that an accurate regression model can be built from them to label the rest? Active learning is a promising solution to this problem, but interestingly, to our best knowledge, it has not been used for regression problems in BCI so far. This paper proposes a novel enhanced batch-mode active learning (EBMAL) approach for regression, which improves upon a baseline active learning algorithm by increasing the reliability, representativeness and diversity of the selected samples to achieve better regression performance. We validate its effectiveness using driver drowsiness estimation from EEG signals. However, EBMAL is a general approach that can also be applied to many other offline regression problems beyond BCI

    EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features

    Full text link
    Riemannian geometry has been successfully used in many brain-computer interface (BCI) classification problems and demonstrated superior performance. In this paper, for the first time, it is applied to BCI regression problems, an important category of BCI applications. More specifically, we propose a new feature extraction approach for Electroencephalogram (EEG) based BCI regression problems: a spatial filter is first used to increase the signal quality of the EEG trials and also to reduce the dimensionality of the covariance matrices, and then Riemannian tangent space features are extracted. We validate the performance of the proposed approach in reaction time estimation from EEG signals measured in a large-scale sustained-attention psychomotor vigilance task, and show that compared with the traditional powerband features, the tangent space features can reduce the root mean square estimation error by 4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291

    Decreasing the human coding burden in randomized trials with text-based outcomes via model-assisted impact analysis

    Full text link
    For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by trained human raters. This process, the current standard, is both time-consuming and limiting: even the largest human coding efforts are typically constrained to measure only a small set of dimensions across a subsample of available texts. In this work, we present an inferential framework that can be used to increase the power of an impact assessment, given a fixed human-coding budget, by taking advantage of any ``untapped" observations -- those documents not manually scored due to time or resource constraints -- as a supplementary resource. Our approach, a methodological combination of causal inference, survey sampling methods, and machine learning, has four steps: (1) select and code a sample of documents; (2) build a machine learning model to predict the human-coded outcomes from a set of automatically extracted text features; (3) generate machine-predicted scores for all documents and use these scores to estimate treatment impacts; and (4) adjust the final impact estimates using the residual differences between human-coded and machine-predicted outcomes. As an extension to this approach, we also develop a strategy for identifying an optimal subset of documents to code in Step 1 in order to further enhance precision. Through an extensive simulation study based on data from a recent field trial in education, we show that our proposed approach can be used to reduce the scope of a human-coding effort while maintaining nominal power to detect a significant treatment impact
    corecore