6,334 research outputs found

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    A Review of Energy Management Systems and Organizational Structures of Prosumers

    Get PDF
    Thisreviewprovidesthestateoftheartofenergymanagementsystems(EMS)and organizationalstructuresofprosumers.Integrationofrenewableenergysources(RES)intothe householdbringsnewchallengesinoptimaloperation,powerquality,participationintheelectricity marketandpowersystemstability.AcommonsolutiontothesechallengesistodevelopanEMSwith differentprosumerorganizationalstructures.EMSdevelopmentisamultidisciplinaryprocessthat needstoinvolveseveralaspectsofobservation.Thispaperprovidesanoverviewoftheprosumer organizationalandcontrolstructures,typesandelements,predictionmethodsofinputparameters, optimizationframeworks,optimizationmethods,objectivefunctions,constraintsandthemarket environment.Specialattentionisgiventotheoptimizationframeworkandpredictionofinput parameters,whichrepresentsroomforimprovement,thatmitigatetheimpactofuncertainties associatedwithRES-basedgeneration,consumptionandmarketpricesonoptimaloperation.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Manufacturing System Lean Improvement Design Using Discrete Event Simulation

    Get PDF
    Lean manufacturing (LM) has been used widely in the past for the continuous improvement of existing production systems. A Lean Assessment Tool (LAT) is used for assessing the overall performance of lean practices within a system, while a Discrete Event Simulation (DES) can be used for the optimization of such systems operations. Lean improvements are typically suggested after a LAT has been deployed, but validation of such improvements is rarely carried out. In the present article a methodology is presented that uses DES to model lean practices within a manufacturing system. Lean improvement scenarios are then be simulated and investigated prior to implementation, thereby enabling a systematic design of lean improvements

    Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control

    Get PDF
    We propose a two-stage, on-line signal control strategy for dynamic networks using a linear decision rule (LDR) approach and a distributionally robust optimization (DRO) technique. The first (off-line) stage formulates a LDR that maps real-time traffic data to optimal signal control policies. A DRO problem is solved to optimize the on-line performance of the LDR in the presence of uncertainties associated with the observed traffic states and ambiguity in their underlying distribution functions. We employ a data-driven calibration of the uncertainty set, which takes into account historical traffic data. The second (on-line) stage implements a very efficient linear decision rule whose performance is guaranteed by the off-line computation. We test the proposed signal control procedure in a simulation environment that is informed by actual traffic data obtained in Glasgow, and demonstrate its full potential in on-line operation and deployability on realistic networks, as well as its effectiveness in improving traffic

    KISS: Stochastic Packet Inspection Classifier for UDP Traffic

    Get PDF
    This paper proposes KISS, a novel Internet classifica- tion engine. Motivated by the expected raise of UDP traffic, which stems from the momentum of Peer-to-Peer (P2P) streaming appli- cations, we propose a novel classification framework that leverages on statistical characterization of payload. Statistical signatures are derived by the means of a Chi-Square-like test, which extracts the protocol "format," but ignores the protocol "semantic" and "synchronization" rules. The signatures feed a decision process based either on the geometric distance among samples, or on Sup- port Vector Machines. KISS is very accurate, and its signatures are intrinsically robust to packet sampling, reordering, and flow asym- metry, so that it can be used on almost any network. KISS is tested in different scenarios, considering traditional client-server proto- cols, VoIP, and both traditional and new P2P Internet applications. Results are astonishing. The average True Positive percentage is 99.6%, with the worst case equal to 98.1,% while results are al- most perfect when dealing with new P2P streaming applications

    Random Approach to Optimization of Overlay Public-Resource Computing Systems

    Full text link
    The growing need for computationally demanding systems triggers the development of various network-oriented computing systems organized in a distributed manner. In this work we concentrate on one kind of such systems, i.e. public-resource computing systems. The considered system works on the top of an overlay network and uses personal computers and other relatively simple electronic equipment instead of supercomputers. We assume that two kinds of network flows are used to distribute the data in the public-resource computing systems: unicast and peer-to-peer. We formulate an optimization model of the system. After that we propose random algorithms that optimize jointly the allocation of computational tasks and the distribution of the output data. To evaluate the algorithms we run numerical experiments and present results showing the comparison of the random approach against optimal solutions provided by the CPLEX solver

    How LinkedIn Economic Graph Bonds Information and Product: Applications in LinkedIn Salary

    Full text link
    The LinkedIn Salary product was launched in late 2016 with the goal of providing insights on compensation distribution to job seekers, so that they can make more informed decisions when discovering and assessing career opportunities. The compensation insights are provided based on data collected from LinkedIn members and aggregated in a privacy-preserving manner. Given the simultaneous desire for computing robust, reliable insights and for having insights to satisfy as many job seekers as possible, a key challenge is to reliably infer the insights at the company level when there is limited or no data at all. We propose a two-step framework that utilizes a novel, semantic representation of companies (Company2vec) and a Bayesian statistical model to address this problem. Our approach makes use of the rich information present in the LinkedIn Economic Graph, and in particular, uses the intuition that two companies are likely to be similar if employees are very likely to transition from one company to the other and vice versa. We compute embeddings for companies by analyzing the LinkedIn members' company transition data using machine learning algorithms, then compute pairwise similarities between companies based on these embeddings, and finally incorporate company similarities in the form of peer company groups as part of the proposed Bayesian statistical model to predict insights at the company level. We perform extensive validation using several different evaluation techniques, and show that we can significantly increase the coverage of insights while, in fact, even improving the quality of the obtained insights. For example, we were able to compute salary insights for 35 times as many title-region-company combinations in the U.S. as compared to previous work, corresponding to 4.9 times as many monthly active users. Finally, we highlight the lessons learned from deployment of our system.Comment: 10 pages, 5 figure
    corecore