13 research outputs found

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Fuzzy rule-based hand gesture recognition

    Get PDF
    This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture.IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural LanguageRed de Universidades con Carreras en Informática (RedUNCI

    A Survey of Machine Learning Techniques for Behavioral-Based Biometric User Authentication

    Get PDF
    Authentication is a way to enable an individual to be uniquely identified usually based on passwords and personal identification number (PIN). The main problems of such authentication techniques are the unwillingness of the users to remember long and challenging combinations of numbers, letters, and symbols that can be lost, forged, stolen, or forgotten. In this paper, we investigate the current advances in the use of behavioral-based biometrics for user authentication. The application of behavioral-based biometric authentication basically contains three major modules, namely, data capture, feature extraction, and classifier. This application is focusing on extracting the behavioral features related to the user and using these features for authentication measure. The objective is to determine the classifier techniques that mostly are used for data analysis during authentication process. From the comparison, we anticipate to discover the gap for improving the performance of behavioral-based biometric authentication. Additionally, we highlight the set of classifier techniques that are best performing for behavioral-based biometric authentication

    Biometric Authentication using Nonparametric Methods

    Full text link
    The physiological and behavioral trait is employed to develop biometric authentication systems. The proposed work deals with the authentication of iris and signature based on minimum variance criteria. The iris patterns are preprocessed based on area of the connected components. The segmented image used for authentication consists of the region with large variations in the gray level values. The image region is split into quadtree components. The components with minimum variance are determined from the training samples. Hu moments are applied on the components. The summation of moment values corresponding to minimum variance components are provided as input vector to k-means and fuzzy kmeans classifiers. The best performance was obtained for MMU database consisting of 45 subjects. The number of subjects with zero False Rejection Rate [FRR] was 44 and number of subjects with zero False Acceptance Rate [FAR] was 45. This paper addresses the computational load reduction in off-line signature verification based on minimal features using k-means, fuzzy k-means, k-nn, fuzzy k-nn and novel average-max approaches. FRR of 8.13% and FAR of 10% was achieved using k-nn classifier. The signature is a biometric, where variations in a genuine case, is a natural expectation. In the genuine signature, certain parts of signature vary from one instance to another. The system aims to provide simple, fast and robust system using less number of features when compared to state of art works.Comment: 20 page

    Off-line signature verification and forgery detection using fuzzy modeling

    No full text
    Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved

    Off-line signature verification and forgery detection using fuzzy modeling

    No full text
    Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved

    Building a Strong Undergraduate Research Culture in African Universities

    Get PDF
    Africa had a late start in the race to setting up and obtaining universities with research quality fundamentals. According to Mamdani [5], the first colonial universities were few and far between: Makerere in East Africa, Ibadan and Legon in West Africa. This last place in the race, compared to other continents, has had tremendous implications in the development plans for the continent. For Africa, the race has been difficult from a late start to an insurmountable litany of problems that include difficulty in equipment acquisition, lack of capacity, limited research and development resources and lack of investments in local universities. In fact most of these universities are very recent with many less than 50 years in business except a few. To help reduce the labor costs incurred by the colonial masters of shipping Europeans to Africa to do mere clerical jobs, they started training ―workshops‖ calling them technical or business colleges. According to Mamdani, meeting colonial needs was to be achieved while avoiding the ―Indian disease‖ in Africa -- that is, the development of an educated middle class, a group most likely to carry the virus of nationalism. Upon independence, most of these ―workshops‖ were turned into national ―universities‖, but with no clear role in national development. These national ―universities‖ were catering for children of the new African political elites. Through the seventies and eighties, most African universities were still without development agendas and were still doing business as usual. Meanwhile, governments strapped with lack of money saw no need of putting more scarce resources into big white elephants. By mid-eighties, even the UN and IMF were calling for a limit on funding African universities. In today‘s African university, the traditional curiosity driven research model has been replaced by a market-driven model dominated by a consultancy culture according to Mamdani (Mamdani, Mail and Guardian Online). The prevailing research culture as intellectual life in universities has been reduced to bare-bones classroom activity, seminars and workshops have migrated to hotels and workshop attendance going with transport allowances and per diems (Mamdani, Mail and Guardian Online). There is need to remedy this situation and that is the focus of this paper
    corecore