1,461 research outputs found

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    Variational Bayesian Inference of Line Spectra

    Get PDF
    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional parameters. We propose an accurate representation of the pdfs of the frequencies by mixtures of von Mises pdfs, which yields closed-form expectations. We define the algorithm VALSE in which the estimates of the pdfs and parameters are iteratively updated. VALSE is a gridless, convergent method, does not require parameter tuning, can easily include prior knowledge about the frequencies and provides approximate posterior pdfs based on which the uncertainty in line spectral estimation can be quantified. Simulation results show that accounting for the uncertainty of frequency estimates, rather than computing just point estimates, significantly improves the performance. The performance of VALSE is superior to that of state-of-the-art methods and closely approaches the Cram\'er-Rao bound computed for the true model order.Comment: 15 pages, 8 figures, accepted for publication in IEEE Transactions on Signal Processin

    Gridless Multisnapshot Variational Line Spectral Estimation from Coarsely Quantized Samples

    Full text link
    Due to the increasing demand for low power and higher sampling rates, low resolution quantization for data acquisition has drawn great attention recently. Consequently, line spectral estimation (LSE) with multiple measurement vectors (MMVs) from coarsely quantized samples is of vital importance in cutting edge array signal processing applications such as range estimation and DOA estimation in millimeter wave radar systems. In this paper, we combine the low complexity gridless variational line spectral estimation (VALSE) and expectation propagation (EP) and propose an MVALSE-EP algorithm to estimate the frequencies from coarsely quantized samples. In addition, the Cram\'{e}r Rao bound (CRB) is derived as a benchmark performance of the proposed algorithm, and insights are provided to reveal the effects of system parameters on estimation performance. It is shown that snapshots benefits the frequency estimation, especially in coarsely quantized scenarios. Numerical experiments are conducted to demonstrate the effectiveness of MVALSE-EP, including real data set

    Sparsity-Based Algorithms for Line Spectral Estimation

    Get PDF
    corecore