47 research outputs found

    Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

    Full text link
    Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.Comment: To appear in the IEEE Trans. Signal Processing. This is a revised, shortened version of version

    Towards SAR Tomographic Inversion via Sparse Bayesian Learning

    Get PDF
    Existing SAR tomography (TomoSAR) algorithms are mostly based on an inversion of the SAR imaging model, which are often computationally expensive. Previous study showed perspective of using data-driven methods like KPCA to decompose the signal and reduce the computational complexity. This paper gives a preliminary demonstration of a new data-driven method based on sparse Bayesian learning. Experiments on simulated data show that the proposed method significantly outperforms KPCA methods in estimating the steering vectors of the scatterers. This gives a perspective of data-drive approach or combining it with model-driven approach for high precision tomographic inversion of large areas.Comment: accepted in preliminary version for EUSAR2020 conferenc

    Image Reconstruction for Multi-frequency Electromagnetic Tomography based on Multiple Measurement Vector Model

    Full text link
    Imaging the bio-impedance distribution of a biological sample can provide understandings about the sample's electrical properties which is an important indicator of physiological status. This paper presents a multi-frequency electromagnetic tomography (mfEMT) technique for biomedical imaging. The system consists of 8 channels of gradiometer coils with adjustable sensitivity and excitation frequency. To exploit the frequency correlation among each measurement, we reconstruct multiple frequency data simultaneously based on the Multiple Measurement Vector (MMV) model. The MMV problem is solved by using a sparse Bayesian learning method that is especially effective for sparse distribution. Both simulations and experiments have been conducted to verify the performance of the method. Results show that by taking advantage of multiple measurements, the proposed method is more robust to noisy data for ill-posed problems compared to the commonly used single measurement vector model.Comment: This is an accepted paper which has been submitted to I2MTC 2020 on Nov. 201

    On Phase Transition of Compressed Sensing in the Complex Domain

    Full text link
    The phase transition is a performance measure of the sparsity-undersampling tradeoff in compressed sensing (CS). This letter reports our first observation and evaluation of an empirical phase transition of the â„“1\ell_1 minimization approach to the complex valued CS (CVCS), which is positioned well above the known phase transition of the real valued CS in the phase plane. This result can be considered as an extension of the existing phase transition theory of the block-sparse CS (BSCS) based on the universality argument, since the CVCS problem does not meet the condition required by the phase transition theory of BSCS but its observed phase transition coincides with that of BSCS. Our result is obtained by applying the recently developed ONE-L1 algorithms to the empirical evaluation of the phase transition of CVCS.Comment: 4 pages, 3 figure

    Bayesian Sparse Fourier Representation of Off-Grid Targets

    Get PDF
    We consider the problem of estimating a finite sum of cisoids via the use of a sparsifying Fourier dictionary (problem that may be of use in many radar applications). Numerous signal sparse representation (SSR) techniques can be found in the literature regarding this problem. However, they are usually very sensitive to grid mismatch. In this paper, we present a new Bayesian model robust towards grid mismatch. Synthetic and experimental radar data are used to assess the ability of the proposed approach to robustify the SSR towards grid mismatch

    Generalized Sparse Covariance-based Estimation

    Full text link
    In this work, we extend the sparse iterative covariance-based estimator (SPICE), by generalizing the formulation to allow for different norm constraints on the signal and noise parameters in the covariance model. For a given norm, the resulting extended SPICE method enjoys the same benefits as the regular SPICE method, including being hyper-parameter free, although the choice of norms are shown to govern the sparsity in the resulting solution. Furthermore, we show that solving the extended SPICE method is equivalent to solving a penalized regression problem, which provides an alternative interpretation of the proposed method and a deeper insight on the differences in sparsity between the extended and the original SPICE formulation. We examine the performance of the method for different choices of norms, and compare the results to the original SPICE method, showing the benefits of using the extended formulation. We also provide two ways of solving the extended SPICE method; one grid-based method, for which an efficient implementation is given, and a gridless method for the sinusoidal case, which results in a semi-definite programming problem
    corecore