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Abstract—We consider the problem of estimating a finite sum
of cisoids via the use of a sparsifying Fourier dictionary (problem
that may be of use in many radar applications). Numerous
signal sparse representation (SSR) techniques can be found in
the literature regarding this problem. However, they are usually
very sensitive to grid mismatch. In this paper, we present a new
Bayesian model robust towards grid mismatch. Synthetic and
experimental radar data are used to assess the ability of the
proposed approach to robustify the SSR towards grid mismatch.

I. INTRODUCTION

In many radar applications, the received signal is con-
ventionally described by a linear model where the signal of
interest, namely the target signal, is represented by a sum of
cisoids embedded in additive noise, i.e.,

y =
N
∑

n=1

αnan + n with [an]m = exp{j2πfnm} (1)

where

y ∈ C
M is the observation vector and M is the size of

the observation space;
αn,an are respectively the complex amplitude and the

steering vector with frequency fn of the nth
target signal;

n is the noise vector.

Several approaches can be used to estimate the target scene
{(αn, fn)} related to the measurement y. These approaches
are usually distinguished into two classes according to whether
the method assumes, or not, a specific model about the noise
covariance matrix. In the latter case the technique is said to
be non-parametric (e.g., Fourier transform, Capon’s method
[1], APES [2]) while in the former case it is called parametric
(e.g., subspace method [3], [4], autoregressive model [5]). Over
the last few decades, a new estimation paradigm called sparse
signal reconstruction (SSR) has emerged. It has been applied
to many signal processing applications and, in particular, to the
target estimation problem (1), e.g., [6]. SSR aims at describing
the signal as a linear combination of a few atoms from a
(possibly pre-defined) dictionary. Towards this end and given
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the problem at hand (1), a natural sparsifying dictionary is the
Fourier basis so that (1) can be reformulated as

y = Fx+ n (2)

with

F ∈ C
M×M̄ the Fourier dictionary of size M×M̄ where

usually in SSR M̄ ≥ M ;

x ∈ C
M̄ the sparse vector having ideally exactly N

nonzero components.

The literature describing methods solving such SSR prob-
lem is nowadays prominent, e.g., ℓ1 penalized least squares
formulations [7] or Bayesian models [8]. However, most of
these techniques are very sensitive to grid mismatch [9], [10].
In the context of (2), grid mismatch occurs whenever the
frequency of a target signal does not belong to the frequency
grid associated with the sparsifying dictionary F , i.e., if fn /∈
{0, 1/M̄, . . . , 1− 1/M̄}. Several attempts have been made at
robustifying SSR technique towards grid mismatch. The most
natural way to deal with grid mismatch is to refine the grid
[11]. However, most of the techniques choose to represent grid
mismatch via a perturbation matrix E added to F [12]. E
usually stems from a first order Taylor expansion [13]–[15].
Another strategy is to consider that F is parameterized by a
frequency grid that is estimated jointly with x [16]. In this
paper, we adopt the latter strategy and propose a hierarchical
Bayesian model which takes into account the possible grid mis-
match in a Fourier dictionary. The model assumes a white noise
background and is an extension (aside from the dictionary) of a
non-robust SSR method [17]. The advantage of the proposed
formulation over that of [13], [14], [16] is that it enforces
more sparsity via the use of a hierarchical Bernoulli-complex
Gaussian prior on x. But mostly it is specifically designed to
be used, in future work, in other estimation schemes recently
developed by the authors.

The remaining of the paper is organized as follows. The
proposed Bayesian model and its associated estimation scheme
are described respectively in Section II and III. Numerical
simulations are conducted in Section IV to assess the benefit
of the robustification on both synthetic and experimental radar
data.
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Fig. 1. Directed acyclic graph associated with the hierarchical Bayesian
model. The dashed lines indicate that (β0, β1) and (γ0, γ1) must be set by
the operator.

II. BAYESIAN MODEL

The hierarchical Bayesian model considered in this paper
is represented graphically in Fig. 1 and detailed herein. Com-
pared to that of [17], the technical novelty resides into the
modeling of the grid mismatch.

A. Observation model

1) Modeling of grid mismatch: We consider the observa-
tion model y = Fx + n described in (2) with M̄ fixed. In
absence of grid mismatch, an appropriate choice for the Fourier
dictionary F yields

[f m̄]m = 1/
√
M exp{j2πm(m̄/M̄)}

where f m̄ is the m̄th column of F . We propose to model the
possible grid error by introducing a perturbation vector on the
frequency axis denoted as

ε = [ε0 . . . εm̄ . . . εM̄−1]
T

so that the Fourier dictionary is parameterized by ε as follows

F , F (ε) = [f0(ε0) . . . f m̄(εm̄) . . . fM̄−1(εM̄−1)]

where the m̄th column of F (ε) is now expressed as

[f m̄(εm̄)]m = 1/
√
M exp{j2πm(m̄+ εm̄)/M̄} .

To avoid overlapping between the frequency bins of F , the
amplitude of the grid errors are assumed bounded such that
for m̄ = 0, . . . , M̄ − 1, εm̄ ∈ [−0.5, 0.5).

2) Likelihood: As stated in the introduction, an additive
white noise background is considered. More precisely n is
assumed to be centered Gaussian with power σ2, which is
denoted as

n|σ2 ∼ CNM

(

0, σ2I
)

(3)

where I is the identity matrix. The likelihood function is thus
given by

f(y|ε,x, σ2) =
1

πMσ2M
exp

{

−‖y − F (ε)x‖22
σ2

}

. (4)

In (4), the vectors of interest are x and ε while σ2 is
a nuisance parameter. To estimate the target scene x, ε a
Bayesian framework is chosen where each unknown parameter
is modeled by a random variable with a given prior probability
density function (pdf). In what follows, each prior density is
designed to find a convenient balance between 1) mathematical
tractability when performing the estimation 2) guarantee to
preserve some physical sense to the hierarchical model.

B. Prior pdfs of the parameters

1) Target amplitude vector: Ideally in SSR the vector x
introduced in (2) has exactly N nonzero elements whose value
represents the post-integration amplitude of the target signal.
As in [17] a Bernoulli-complex Gaussian prior is chosen to
actually enforce sparsity in x. More precisely, the elements

xm̄ , [x]m̄ of the amplitude vector are assumed independent
and identically distributed (iid) according to the following
mixed type pdf

f(xm̄|w, σ2
x) = (1−w)δ(|xm̄|)+w

1

πσ2
x

exp

{

−|xm̄|2
σ2
x

}

. (5)

Using the prior (5), denoted as xm̄|w, σ2
x ∼ BerCN

(

w, 0, σ2
x

)

,

leads to considering that a target with power σ2
x is present at

the m̄th frequency with probability w.

2) Grid errors: In this paper, we propose to define the prior
pdf of the grid error εm̄ conditionally to the magnitude of xm̄.
The idea behind this approach is that it may be unnecessary
to estimate a grid error if no target signal is present at the
corresponding frequency bin. More specifically, we assume
that the εm̄|xm̄ are iid with pdf

f(εm̄|xm̄ = 0) = δ(εm̄) (6a)

f(εm̄|xm̄ 6= 0) = I[−0.5,0.5](εm̄) (6b)

where IA(.) is the indicator function of the set A. Note that the
uniform distribution (6b) over [−.5, .5] is equivalent to a Beta-
like distribution of parameters (1,1) over [−.5, .5], denoted as
Be[−.5,.5] (1, 1).

3) Noise power: A suitable prior for the white noise power
σ2 is an inverse-gamma distribution since it is conjugate to the
likelihood (4). The prior pdf of σ2 can therefore be expressed
as

f(σ2|γ0, γ1) ∝
e−γ1/σ

2

(σ2)γ0+1
I[0,+∞)(σ

2) (7)

where γ0, γ1 are respectively the shape and scale parameters.
The distribution (7) is denoted as σ2|γ0, γ1 ∼ IG (γ0, γ1).
Note that by tuning adequately the shape and scale parameters
(γ0, γ1), the prior can be made very informative or on the
contrary flat. In radar applications, the thermal noise power is
usually well known so that a moderately informative prior can
be favored.



C. Prior pdfs of the hyperparameters

Since the probability w and the target signal power σ2
x are

both unknown, another level is added to the hierachical model.

1) Target signal power: Similarly to the case of σ2, an
inverse-gamma prior is chosen for the target signal power σ2

x
and is denoted as σ2

x|β0, β1 ∼ IG (β0, β1). Nonetheless note
that the shape and scale parameters β0, β1 must be chosen
to obtain this time a not so informative prior since the target
signal amplitudes may vary significantly from one to another.

2) Level of occupancy: If no information is available to the
radar operator about the sparsity level of the target scene, a
convenient prior is a uniform pdf over the interval [0, 1], i.e.,
w ∼ U[0,1].

III. BAYESIAN ESTIMATION

Herein we propose an estimation scheme of the target scene
x, ε according to the Bayesian hierarchical model described in
Section II. Particularly in what follows, we propose to study
the minimum mean square error (MMSE) estimators

x̂MMSE =

∫

xf(x|y)dx, (8a)

ε̂MMSE =

∫

εf(ε|y)dε. (8b)

The MMSE estimator of x was intractable to derive an-
alytically in [17] when the grid mismatch was not taken
into account. Therefore, the analytic calculation of the
MMSE estimators (8a) and (8b) seem all the more try-
ing. A Monte-Carlo Markov Chain (MCMC) is thus im-
plemented [18]. The MCMC algorithm simulates itera-

tively samples σ2(t), ε(t),x(t), w(t), σ2
x
(t)

according to their
conditional posterior distribution f(θi|y,θ−i) where θ =
[

σ2, εT ,xT , w, σ2
x

]T
and θ−i is the vector θ whose ith

element has been removed. After a burn-in time Nbi, the
samples are distributed according to their posterior distribution
f(θi|y). When a sufficient number of samples Nr is collected,
conventional Bayesian estimators can be built empirically

θ̂iMMSE = N−1
r

Nr
∑

t=1

θi
(t+Nbi). (9)

The conditional posterior distributions are obtained from the
joint posterior pdf of σ2, ε,x, w, σ2

x|y

f(σ2, ε,x, w, σ2
x|y)

∝ f(y|ε,x, σ2)f(ε|x)f(x|w, σ2
x)f(w)f(σ

2
x)f(σ

2).

In particular, both vectors x and ε are sampled element-
wise. The conditional posterior distributions of εm̄ and xm̄

are derived from their conditional joint posterior distribution

f(εm̄, xm̄|y, ε−m̄,x−m̄, σ2, w, σ2
x)

∝ exp
{

−σ−2
[

|xm̄|2 − x∗
m̄f m̄(εm̄)Hem̄ − xm̄eHm̄f m̄(εm̄)

]}

×f(εm̄|xm̄)f(xm̄|w, σ2
x) (10)

where em̄ = y −∑

i 6=m̄ f i(ǫi)xi.

A. Sampling of x

Following [17], x is sampled element-wise. The m̄th
element of x follows the distribution BerCN

(

wm̄, µm̄, η2m̄
)

with

η2m̄ =

(

1

σ2
+

1

σ2
x

)−1

µm̄ =
η2m̄
σ2

f m̄(ǫm̄)Hem̄

wm̄ =
w

η2

m̄

σ2
x

exp
{

|µm̄|2
η2
m̄

}

1− w + w η2
m̄

σ2
x

exp
{

|µm̄|2
η2
m̄

} .

B. Sampling of ε

As for the vector x, the parameter ε is sampled element-
wise. Using (10), the conditional posterior distribution of εm̄
is calculated and rearranged to obtain

f(εm̄|y, ε−m̄,x, σ2)∝ exp

{

M−1
∑

m=1

κm cos
(

2π
εm̄
M̄

m− φm

)

}

×f(εm̄|xm̄) (11)

where κm = 2
σ2

√
M

×|bm| and φm = ∠bm. b has been defined
as

b = x∗
m̄u∗

m̄ ⊙ em̄, (12)

where um̄ = exp{j2πm(m̄/M̄)}. When xm̄ 6= 0,
f(εm̄|xm̄) = I[−0.5,0.5](εm̄). Thus, we recognize from (11)
a dilated and truncated generalized von Mises distribution
[19]. Such a distribution can be troublesome to sample, so
a Metropolis-Hastings (MH) algorithm is used [18]. This
algorithm is based on a proposal distribution that is easy to
simulate from, and is chosen as close as possible from the
target distribution. The conditional posterior distribution of εm̄
is represented in Fig.2 for different values of mismatch and
post-processing SNR (defined in (16)). This figure suggests
that a flat proposal would be appropriate in the case of low
power, and a Gaussian distribution in the case of high power.
Thus, in our MH algorithm we switch from a flat proposal to a
Gaussian proposal (and vice-versa) depending on the estimated
target power. This adaptive scheme should be employed only
during a burn-in period in order to preserve the convergence
properties [18], but in fact it does not damage the performance
when used in the whole process.

C. Sampling of w, σ2
x and σ2

Like in [17], the parameter σ2 and hyperparameters w
and σ2

x are sampled according to their conditional posterior
distribution

σ2|y,x, ε ∼ IG
(

γ0 +M,γ1+ ‖ y − F (ε)x ‖22
)

(13)

w|x ∼ Be (1 + n1, 1 + n0) (14)

σ2
x|x ∼ IG

(

β0 + n1, β1+ ‖ x ‖22
)

(15)

where n1 is the number of nonzero elements of x and n0 =
M̄ − n1.
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Fig. 2. Shape of the conditional posterior distribution f(εm̄|y, ε
−m̄,x, σ2).

(a) SNR=5dB, εm̄ = .15. (b) SNR=5dB, εm̄ = .45. (c) SNR=15dB, εm̄ =
.15. (d) SNR=15dB, εm̄ = .45.

IV. NUMERICAL SIMULATIONS

We now present various numerical examples illustrating
the performance of the proposed SSR algorithm. Note that
for each scenario, the constant hyperparameters (γ0, γ1) and
(β0, β1) are calculated to obtain the desired values of mean
and variance of the prior distributions of σ2 and σ2

x. Indeed
for an inverse gamma distribution g ∼ IG (ν0, ν1) the mean
and variance are respectively

mg =
ν1

ν0 − 1
, ν0 > 1

varg =
ν21

(ν0 − 1)2(ν0 − 2)
, ν0 > 2

so the parameters are calculated as

ν0 =
m2

g

varg
+ 2

ν1 = mg

(

m2
g

varg
+ 1

)

.

A. Synthetic data

To begin with, synthetic data are generated according to
the model described by (1) and (3).

1) Results after one realization: Three targets with possible
grid mismatch are simulated in a white noise background with
unit power. They all have a post-processing signal-to-noise
ratio (SNR) of 25 dB, defined as

SNRn =
E{|αn|2}

σ2
×M. (16)

In Fig. 3 are plotted the post-processing amplitude of the target
vector x̂MMSE and the grid mismatch ε̂MMSE. These estimates
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Fig. 3. SSR of synthetic target scene: M = 16, N = 3, σ2 = 1, M̄ =
M , (m

σ2
x
,
√

var
σ2
x
) = MdB + (0, 3.5) dB where MdB = 10 log10(M),

(m
σ2 ,

√
var

σ2 ) = (0, 2.4) dB. (a) Grid errors ε. (b) Target amplitude vector
x.

are compared with the true target scene x, ε and with the target
scene estimated by the non-robust method (the proposed SSR
technique when the grid mismatch is ignored, i.e., with ε = 0).
From Fig. 3, we see that the proposed SSR algorithm estimates
correctly both x and ε. On the contrary, if the grid error is
ignored, the target energy tends to be spread over the adjacent
frequency bins especially when the mismatch is important,
i.e., |εm̄| → .5. As as result it invalidates the sparsity of the
reconstruction (this performance loss is well known).

2) Performance: A simple scenario is considered with a
single target at zero velocity for different values of SNR and
mismatch ǫ0. The performance of the proposed estimators (8)
is assessed after 500 Monte-Carlo simulations through the cal-
culation of the mean square error (MSE) of the reconstructed



estimated target scene F (ε̂MMSE)x̂MMSE i.e.

MSE(F (ε̂MMSE)x̂MMSE) = (17)

1

Nmc

Nmc
∑

n=1

‖ F (ε̂
(n)
MMSE)x̂

(n)
MMSE − F (ε)x ‖22 .

This metric seems more relevant than the MSE of x̂MMSE and
ε̂MMSE. Indeed, the sparse representation sometimes induces
ambiguity about the position of the target: is it in the m̄th
frequency bin with a mismatch of .5 (εm̄ = .5) or in the
m̄+1th frequency bin with a mismatch of -.5 (εm̄+1 = −.5)?
With such an ambiguity, two problems might arise: the target
might be shifted or split. Let us consider the case of a target
in the m̄th frequency bin with a mismatch of .5 (εm̄ = .5).
First, the analysis may result in a shifted target: the target is
estimated in the next range bin with a mismatch of -.5. The
analysis may also result in a split target: a target is estimated
in the m̄th frequency bin with a positive mismatch (εm̄ → .5),
and another in the m̄ + 1th frequency bin with a negative
mismatch (εm̄+1 → −.5). In both cases, the MSE of x̂MMSE

and ε̂MMSE will be high. On the other hand, the MSE of the
reconstructed estimated target scene F (ε̂MMSE)x̂MMSE will be
lower, thanks to the estimation of ε̂MMSE. This metric may be
more representative of the estimation quality.

We represent on Fig.4 the MSE of F (ε̂MMSE)x̂MMSE as a
function of grid mismatch for a SNR of 10 and 20 dB. We can
see from Fig.4 that for a SNR of 20 dB, the robust analysis
outperforms the non-robust analysis as soon as ǫ0 > .02 (ǫ0 >
.75 for a SNR of 10 dB) meaning that it is almost always
profitable to estimate ε. We can also see that the benefits of the
robust analysis compared to the non-robust analysis increase
with the SNR. The clairvoyant case with respect to (wrt) grid
mismatch is also represented on Fig.4 and corresponds to the
robust analysis when ε is known. It is a reference and it shows
that when we know the true value of the grid mismatch, it is
worth taking it into account for the estimation of the target
scene. It also indicates how reliable the sampling of ε is in
the proposed SSR method: it is highly efficient.

B. Experimental data

Let us now discuss the performance of the SSR algorithm
in a practical case. To that end, data collected from the
PARSAX radar [20] on November 2010 are considered. For
this dataset the radar was pointing on a freeway during a
heavy traffic time. The exact number of targets as well as their
amplitude and location in the range-velocity map are unknown.
Note that compared to the synthetic case, the target amplitudes
are very high, so the hyperparameters (β0, β1) are set such that
(mσ2

x
,
√
varσ2

x
) = MdB + (60, 3.5) dB. In Fig. 5 are depicted

the elements of x̂MMSE whose magnitude is greater than the
lowest value of the colorbar. For the sake of comparison,
the amplitude estimated by a conventional Capon’s method is
represented as a transparent background. (Note however that
the Capon’s output gives only an estimate of the target scene
and should not be taken has the ground truth.) We see again
the benefit of estimating the grid mismatch to avoid target
spreading and/or miss detection. It is worth noticing that the
target at range bin #4 and velocity ≈ −17 m/s is split by the
robust analysis. This problem has been discussed before, and
we can see that the non-robust estimation of this target is even
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Fig. 4. Performance on synthetic target scene: M = 32, N = 1, σ2 =
1, M̄ = M , (m
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(0, 2.4) dB. Comparison with the clairvoyant wrt ǫ and non-robust estimation.
(a) SNR=10dB. (b) SNR=20dB

worse. Besides, this anomaly is not inherent to our model and
has been identified in [15] where a perturbation matrix is used.

V. CONCLUSION

In this paper we have described a new Bayesian al-
gorithm for the sparse representation of targets in Fourier
basis. Particularly, an error vector is introduced to model the
possible mismatch between the target frequency and the nearest
frequency point in the Fourier basis. The method, though
computationally intensive, allows the sparsity of the scene to
be preserved in case of grid mismatch. However, a problem
persists in the limiting case when |εm̄| → .5 but the proposed
estimation method still remains more reliable than the non-
robust estimation. A number of parameters need to be set
by the radar operator, and they can change significantly the
performance of the analysis (in particular the parameters of
the target signal power). This point will be further investigated
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Fig. 5. SSR of experimental target scene (PARSAX data): range resolution
of 1.5 m, M = 16, N unknown, σ2 ≈ 1 (pre-normalization of the data),
M̄ = M , (m

σ2
x
,
√

var
σ2
x
) = MdB + (60, 3.5) dB, (m

σ2 ,
√
var

σ2 ) =

(0, 2.4) dB. (a) Target amplitude vector x̂MMSE (diamond marker). (b) Target
amplitude vector x̂MMSE when ε = 0 (diamond marker).

in the near future. Furthermore, the proposed SSR technique
will be integrated into more advanced hierarchical model.
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