20,899 research outputs found

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    Biometric identity verification using on-line & off-line signature verification

    Get PDF
    Biometrics is the utilization of biological characteristics (face, iris, fingerprint) or behavioral traits (signature, voice) for identity verification of an individual. Biometric authentication is gaining popularity as a more trustable alternative to password-based security systems as it is relatively hard to be forgotten, stolen, or guessed. Signature is a behavioral biometric: it is not based on the physical properties, such as fingerprint or face, of the individual, but behavioral ones. As such, one's signature may change over time and it is not nearly as unique or difficult to forge as iris patterns or fingerprints, however signature's widespread acceptance by the public, make it more suitable for certain lower-security authentication needs. Signature verification is split into two according to the available data in the input. Off-line signature verification takes as input the image of a signature and is useful in automatic verification of signatures found on bank checks and documents. On-line signature verification uses signatures that are captured by pressure-sensitive tablets and could be used in real time applications like credit card transactions or resource accesses. In this work we present two complete systems for on-line and off-line signature verification. During registration to either of the systems the user has to submit a number of reference signatures which are cross aligned to extract statistics describing the variation in the user's signatures. Both systems have similar verification methodology and differ only in data acquisition and feature extraction modules. A test signature's authenticity is established by first aligning it with each reference signature of the claimed user, resulting in a number of dissimilarity scores: distances to nearest, farthest and template reference signatures. In previous systems, only one of these distances, typically the distance to the nearest reference signature or the distance to a template signature, was chosen, in an ad-hoc manner, to classify the signature as genuine or forgery. Here we propose a method to utilize all of these distances, treating them as features in a two-class classification problem, using standard pattern classification techniques. The distances are first normalized, resulting in a three dimensional space where genuine and forgery signature distributions are well separated. We experimented with the Bayes classifier, Support Vector Machines, and a linear classifier used in conjunction with Principal Component Analysis, to classify a given signature into one of the two classes (forgery or genuine). Test data sets of 620 on-line and 100 off-line signatures were constructed to evaluate performances of the two systems. Since it is very difficult to obtain real forgeries, we obtained skilled forgeries which are supplied by forgers who had access to signature data to practice before forging. The online system has a 1.4% error in rejecting forgeries, while rejecting only 1.3% of genuine signatures. As an offine signature is easier to forge, the offine system's performance is lower: a 25% error in rejecting forgery signatures and 20% error in rejecting genuine signatures. The results for the online system show significant improvement over the state-of-the-art results, and the results for the offline system are comparable with the performance of experienced human examiners

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    Person Identification System using Static-dyamic Signatures Fusion

    Get PDF
    Off-line signature verification systems rely on static image of signature for person identification. Imposter can easily imitate the static image of signature of the genuine user due to lack of dynamic features. This paper proposes person identity verification system using fused static-dynamic signature features. Computational efficient technique is developed to extract and fuse static and dynamic features extracted from offline and online signatures of the same person. The training stage used the fused features to generate couple reference data and classification stage compared the couple test signatures with the reference data based on the set threshold values. The system performance is encouraging against imposter attacker in comparison with previous single sensor offline signature identification systems

    eIDeCert: a user-centric solution for mobile identification

    No full text
    The necessity to certify one's identity for different purposes and the evolution of mobile technologies have led to the generation of electronic devices such as smart cards, and electronic identities designed to meet daily needs. Nevertheless, these mechanisms have a problem: they don't allow the user to set the scope of the information presented. That problem introduces interesting security and privacy challenges and requires the development of a new tool that supports user-centrity for the information being handled. This article presents eIDeCert, a tool for the management of electronic identities (eIDs) in a mobile environment with a user-centric approach. Taking advantage of existing eCert technology we will be able to solve a real problem. On the other hand, the application takes us to the boundary of what the technology can cope with: we will assess how close we are to the boundary, and we will present an idea of what the next step should be to enable us to reach the goal
    • …
    corecore