4,762 research outputs found

    Rules for the Cortical Map of Ocular Dominance and Orientation Columns

    Full text link
    Three computational rules are sufficient to generate model cortical maps that simulate the interrelated structure of cortical ocular dominance and orientation columns: a noise input, a spatial band pass filter, and competitive normalization across all feature dimensions. The data of Blasdel from optical imaging experiments reveal cortical map fractures, singularities, and linear zones that are fit by the model. In particular, singularities in orientation preference tend to occur in the centers of ocular dominance columns, and orientation contours tend to intersect ocular dominance columns at right angles. The model embodies a universal computational substrate that all models of cortical map development and adult function need to realize in some form.Air Force Office of Scientific Research (F49620-92-J- 0499, F49620-92-J-0334); Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100); National Science Foundation (IRI-90-24877); British Petroleum (BP 89A-1204

    Pinwheel stabilization by ocular dominance segregation

    Full text link
    We present an analytical approach for studying the coupled development of ocular dominance and orientation preference columns. Using this approach we demonstrate that ocular dominance segregation can induce the stabilization and even the production of pinwheels by their crystallization in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a condition that is fulfilled during early cortical development. Increasing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.Comment: 10 pages, 4 figure

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure

    The Effects of Ocular Dominance on Visual Processing in College Students

    Get PDF
    The role of ocular dominance in processing visual memory and analytic tasks is unknown. Research has variably showed both significant effects and no effect of ocular dominance on visual perception, motor control, and sports performance. The goal of this study was to determine if there is a relationship between ocular dominance and visual processing under a variety of computer gaming tasks. This was accomplished by first determining subjects’ ocular dominance through the Miles test, and then examining the subjects’ visual performance on four different Lumosity games under three conditions: left eye, right eye, and both eyes. Results suggest a relationship between ocular dominance and score in the simplest game used, named Raindrops, but did not identify a relationship between ocular dominance and accuracy. The study did not suggest a relationship within any of the other games that measure a variety of different abilities. It is possible a relationship between ocular dominance and score in the game Raindrops may have been due to the simplicity of the task. A small sample size (n = 20) may have also contributed to the inability to detect significant effects. Future studies incorporating larger sample sizes might focus on ocular dominance as it relates to simple arithmetic tasks

    The effects of ocular dominance on visual processing in college students

    Get PDF
    V. Abstract The role of ocular dominance in processing visual memory and analytic tasks is unknown. Previous research variably showed both significant effects and no effect of ocular dominance on visual perception, motor control and sports performance. Consequently, the goal of this study was to determine if there is a relationship between ocular dominance and visual processing under a variety of computer gaming tasks. This was accomplished by first determining subjects’ ocular dominance through the use of the Miles test, and then proceeding to examine the subjects’ visual performance on four different Lumosity games under three conditions: left eye, right eye and both eyes. The results revealed that there was a relationship between ocular dominance and score in one of the games tested: Raindrops. However, there was no relationship between ocular dominance and accuracy measured in this game nor was there a relationship within any of the other games. It is possible that a relationship between ocular dominance and score in the game Raindrops may have been due to the simplicity of the task. Raindrops only measures arithmetic ability whereas the other games measure a variety of different abilities. A small sample size (n = 20) may have also contributed to the inability to detect significant effects

    Age-Dependent Ocular Dominance Plasticity in Adult Mice

    Get PDF
    Background: Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings: We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance: These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is mos

    A theory for the alignment of cortical feature maps during\ud development

    Get PDF
    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience–dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps

    Using psychophysical performance to predict short-term ocular dominance plasticity in human adults

    Get PDF
    Binocular rivalry has become an important index of visual performance, both to measure ocular dominance or its plasticity, and to index bistable perception. We investigated its interindividual variability across 50 normal adults and found that the duration of dominance phases in rivalry is linked with the duration of dominance phases in another bistable phenomenon (structure from motion). Surprisingly, it also correlates with the strength of center-surround interactions (indexed by the tilt illusion), suggesting a common mechanism supporting both competitive interactions: center-surround and rivalry. In a subset of 34 participants, we further investigated the variability of short-term ocular dominance plasticity, measured with binocular rivalry before and after 2 hours of monocular deprivation. We found that ocular dominance shifts in favor of the deprived eye and that a large portion of ocular dominance variability after deprivation can be predicted from the dynamics of binocular rivalry before deprivation. The single best predictor is the proportion of mixed percepts (phases without dominance of either eye) before deprivation, which is positively related to ocular dominance unbalance after deprivation. Another predictor is the duration of dominance phases, which interacts with mixed percepts to explain nearly 50% of variance in ocular dominance unbalance after deprivation. A similar predictive power is achieved by substituting binocular rivalry dominance phase durations with tilt illusion magnitude, or structure from motion phase durations. Thus, we speculate that ocular dominance plasticity is modulated by two types of signals, estimated from psychophysical performance before deprivation, namely, interocular inhibition (promoting binocular fusion, hence mixed percepts) and inhibition for perceptual competition (promoting longer dominance phases and stronger center-surround interactions)

    Relationship Between Ocular Sensory Dominance and Stereopsis

    Get PDF
    Purpose: It is unknown whether individuals with two balanced eyes show quicker response and lower threshold in fine stereoscopic detection. Previous methods to measure ocular dominance were primarily qualitative, which do not quantify the degree of dominance and show limitation in identifying the dominant eye. In this study, we aimed at quantifying the difference of ocular strength between the two eyes with ocular dominance index (ODI) and studying the association of ocular balance between the two eyes with stereoscopic detection. Methods: Stereoscopic threshold was measured in thirty-three subjects. Stereopsis was measured with random dot stimuli. The minimal detectable disparity (Dmin) and the minimal time needed to acquire the best stereoacuity (Tmin) were quantified. Ocular dominance was measured by a continuous flashing technique with the tested eye viewing a titled Gabor patch increasing in contrast and the fellow non-tested eye viewing a Mondrian noise decreasing in contrast. The log ratio of Mondrian to Gabor’s contrasts was recorded when a subject just detected the tilting direction of the Gabor during each trial. The t-value derived from a t-test of the 50 values obtained in each eye was used to determine a subject’s ODI (ocular dominance index) to quantify the degree of ocular dominance. A subject with ODI ≥ 2 (p \u3c 0.05) was defined to have clear dominance and the eye with larger mean ratio was the dominant eye. Results: The Dmin (55.40 arcsec) in subjects with two balanced eyes were not significantly different from the Dmin (43.29 arcsec) in subjects with clear ocular dominance (p = 0.87). Subjects with two balanced eyes had significantly (p = 0.01) shorter reaction times on average (Tmin = 138.28 msec) compared to subjects with clear dominance (Tmin = 1229.02 msec). Tmin values were highly correlated with ocular dominance (p = 0.0004). Conclusion: Subjects with two relatively balanced eyes take shorter reaction time to achieve optimal level of stereoacuity. Keywords: Ocular Dominance, Local Stereopsis, Binocular, Balanced Eyes, Anisometropi
    corecore