4 research outputs found

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Motion Planning of Redundant Manipulators for Painting Uniform Thick Coating in Irregular Duct

    Get PDF
    The paper presents a motion planning method of redundant manipulator for painting uniform thick coating on the interior of irregular duct of some aircrafts. Discontinuous peripheral painting method is employed by analyzing the restrictions during painting the duct. For improving the longitudinal uniformity of thick coating, the interlacing painting method plans two sets of sweeping paths and an interlacing distance between the starting paths of the two times of painting. The interlacing distance and overlapping distance are optimized by establishing and analyzing the model of longitudinal uniformity. To enhance the transverse uniformity, sweeping speeds for curved surfaces are calculated by the ratio of transfer efficiency after the basic sweeping speed for the plane is determined. The intertwining method, minimizing the sum of the weighed distances between the duct centerline and key points of the manipulator links, is employed for the joint trajectory planning without collision. The simulation and experiment results show that the redundant manipulators can finish painting the internal surface of the irregular S-shaped duct without collision. The maximum relative deviation is 16.3% and the thicknesses of all measurement points satisfy the acceptance criteria of the factory

    Hierarchical Task Planning for Multiarm Robot with Multiconstraint

    Get PDF
    Multiarm systems become the trends of space robots, for the on-orbit servicing missions are becoming more complex and various. A hierarchical task planning method with multiconstraint for multiarm space robot is presented in this paper. The process of task planning is separated into two hierarchies: mission profile analysis and task node planning. In mission profile analysis, several kinds of primitive tasks and operators are defined. Then, a complex task can be decomposed into a sequence of primitive tasks by using hierarchical task network (HTN) with those primitive tasks and operators. In task node planning, A⁎ algorithm is improved to adapt the continuous motion of manipulator. Then, some of the primitive tasks which cannot be executed directly because of constraints are further decomposed into several task nodes by using improved A⁎ algorithm. Finally, manipulators execute the task by moving from one node to another with a simple path plan algorithm. The feasibility and effectiveness of the proposed task planning method are verified by simulation

    Obstacle Avoidance for Redundant Manipulator without Information of the Joint angles

    No full text
    1
    corecore