5,514 research outputs found

    Quantifying the digital traces of Hurricane Sandy on Flickr

    Get PDF
    Society’s increasing interactions with technology are creating extensive “digital traces” of our collective human behavior. These new data sources are fuelling the rapid development of the new field of computational social science. To investigate user attention to the Hurricane Sandy disaster in 2012, we analyze data from Flickr, a popular website for sharing personal photographs. In this case study, we find that the number of photos taken and subsequently uploaded to Flickr with titles, descriptions or tags related to Hurricane Sandy bears a striking correlation to the atmospheric pressure in the US state New Jersey during this period. Appropriate leverage of such information could be useful to policy makers and others charged with emergency crisis management

    Objects of Storytelling and Digital Memory (MEMO)

    Get PDF
    Memories can be formed around contact with physical objects that populate our everyday lives, we make sense of the physical world by the memories we create. We can create levels of understanding in relation to objects by organising significant memories into stories that hold meaning. The story of an object can involve the story of the personal relationship people have with it, the object can be a trigger on more than one level. In this project the physical, acts as a bridge to the virtual to provoke memory and sometimes instigate new memory formation in relation to an object. The artefacts of collective digital memory are accessed and rearranged through interaction with objects, the performance of this interaction gives space in which memories and stories about the objects and virtual artefacts can form. Physical manifestations of meta-data are used to create an unconventional interface to a database of existing memories. This paper seeks to frame the project theoretically and describe the resulting piece of work

    Online Popularity and Topical Interests through the Lens of Instagram

    Full text link
    Online socio-technical systems can be studied as proxy of the real world to investigate human behavior and social interactions at scale. Here we focus on Instagram, a media-sharing online platform whose popularity has been rising up to gathering hundred millions users. Instagram exhibits a mixture of features including social structure, social tagging and media sharing. The network of social interactions among users models various dynamics including follower/followee relations and users' communication by means of posts/comments. Users can upload and tag media such as photos and pictures, and they can "like" and comment each piece of information on the platform. In this work we investigate three major aspects on our Instagram dataset: (i) the structural characteristics of its network of heterogeneous interactions, to unveil the emergence of self organization and topically-induced community structure; (ii) the dynamics of content production and consumption, to understand how global trends and popular users emerge; (iii) the behavior of users labeling media with tags, to determine how they devote their attention and to explore the variety of their topical interests. Our analysis provides clues to understand human behavior dynamics on socio-technical systems, specifically users and content popularity, the mechanisms of users' interactions in online environments and how collective trends emerge from individuals' topical interests.Comment: 11 pages, 11 figures, Proceedings of ACM Hypertext 201

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Revisiting Resolution and Inter-Layer Coupling Factors in Modularity for Multilayer Networks

    Full text link
    Modularity for multilayer networks, also called multislice modularity, is parametric to a resolution factor and an inter-layer coupling factor. The former is useful to express layer-specific relevance and the latter quantifies the strength of node linkage across the layers of a network. However, such parameters can be set arbitrarily, thus discarding any structure information at graph or community level. Other issues are related to the inability of properly modeling order relations over the layers, which is required for dynamic networks. In this paper we propose a new definition of modularity for multilayer networks that aims to overcome major issues of existing multislice modularity. We revise the role and semantics of the layer-specific resolution and inter-layer coupling terms, and define parameter-free unsupervised approaches for their computation, by using information from the within-layer and inter-layer structures of the communities. Moreover, our formulation of multilayer modularity is general enough to account for an available ordering of the layers and relating constraints on layer coupling. Experimental evaluation was conducted using three state-of-the-art methods for multilayer community detection and nine real-world multilayer networks. Results have shown the significance of our modularity, disclosing the effects of different combinations of the resolution and inter-layer coupling functions. This work can pave the way for the development of new optimization methods for discovering community structures in multilayer networks.Comment: Accepted at the IEEE/ACM Conf. on Advances in Social Network Analysis and Mining (ASONAM 2017

    Visual BFI: an Exploratory Study for Image-based Personality Test

    Full text link
    This paper positions and explores the topic of image-based personality test. Instead of responding to text-based questions, the subjects will be provided a set of "choose-your-favorite-image" visual questions. With the image options of each question belonging to the same concept, the subjects' personality traits are estimated by observing their preferences of images under several unique concepts. The solution to design such an image-based personality test consists of concept-question identification and image-option selection. We have presented a preliminary framework to regularize these two steps in this exploratory study. A demo version of the designed image-based personality test is available at http://www.visualbfi.org/. Subjective as well as objective evaluations have demonstrated the feasibility of image-based personality test in limited questions
    corecore