3 research outputs found

    The Interactive Curry Observation Debugger iCODE

    Get PDF
    AbstractDebugging by observing the evaluation of expressions and functions is a useful approach for finding bugs in lazy functional and functional logic programs. However, adding and removing observation annotations to a program is an effort making the use of this debugging technique in practice uncomfortable. Having tool support for managing observations is desirable. We developed a tool that provides this ability for programmers. Without annotating expressions in a program, the evaluation of functions, data structures and arbitrary subexpressions can be observed by selecting them from a tree-structure representing the whole program. Furthermore, the tool provides a step by step performing of observations where each observation is shown in a separated viewer. Beside searching bugs, the tool can be used to assist beginners in learning the non-deterministic behavior of lazy functional logic programs. To find a surrounding area that contains the failure, the tool can furthermore show the executed part of the program by marking the expressions that are activated during program execution

    Algorithmic debugging for complex lazy functional programs

    Get PDF
    An algorithmic debugger finds defects in programs by systematic search. It relies on the programmer to direct the search by answering a series of yes/no questions about the correctness of specific function applications and their results. Existing algorithmic debuggers for a lazy functional language work well for small simple programs but cannot be used to locate defects in complex programs for two reasons: Firstly, to collect the information required for algorithmic debugging existing debuggers use different but complex implementations. Therefore, these debuggers are hard to maintain and do not support all the latest language features. As a consequence, programs with unsupported language features cannot be debugged. Also inclusion of a library using unsupported languages features can make algorithmic debugging unusable even when the programmer is not interested in debugging the library. Secondly, algorithmic debugging breaks down when the size or number of questions is too great for the programmer to handle. This is a pity, because, even though algorithmic debugging is a promising method for locating defects, many real-world programs are too complex for the method to be usuable. I claim that the techniques in in this thesis make algorithmic debugging useable for a much more complex lazy functional programs. I present a novel method for collecting the information required for algorithmically debugging a lazy functional program. The method is non-invasive, uses program annotations in suspected modules only and has a simple implementation. My method supports all of Haskell, including laziness, higher-order functions and exceptions. Future language extensions can be supported without changes, or with minimal changes, to the implementation of the debugger. With my method the programmer can focus on untrusted code -- lots of trusted libraries are unaffected. This makes traces, and hence the amount of questions that needs to be answered, more manageable. I give a type-generic definition to support custom types defined by the programmer. Furthermore, I propose a method that re-uses properties to answer automatically some of the questions arising during algorithmic debugging, and to replace others by simpler questions. Properties may already be present in the code for testing; the programmer can also encode a specification or reference implementation as a property, or add a new property in response to a statement they are asked to judge

    Observing Functional Logic Computations

    Get PDF
    A lightweight approach to debugging functional logic programs by observations is presented, implemented for the language Curry. The Curry Object Observation System (COOSy) comprises a portable library plus a viewing tool. A programmer can observe data structures and functions by annotating expressions in his program. The possibly partial values of observed expressions that are computed during program execution are recorded in a trace file, including information on non-deterministic choices and logical variables. A separate viewing tool displays the trace content. COOSy covers all aspects of modern functional logic multiparadigm languages such as lazy evaluation, higher order functions, non-deterministic search, logical variables, concurrency and constraints. Both use and implementation of COOSy are described
    corecore