4,815 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Energy Harvesting Broadband Communication Systems with Processing Energy Cost

    Full text link
    Communication over a broadband fading channel powered by an energy harvesting transmitter is studied. Assuming non-causal knowledge of energy/data arrivals and channel gains, optimal transmission schemes are identified by taking into account the energy cost of the processing circuitry as well as the transmission energy. A constant processing cost for each active sub-channel is assumed. Three different system objectives are considered: i) throughput maximization, in which the total amount of transmitted data by a deadline is maximized for a backlogged transmitter with a finite capacity battery; ii) energy maximization, in which the remaining energy in an infinite capacity battery by a deadline is maximized such that all the arriving data packets are delivered; iii) transmission completion time minimization, in which the delivery time of all the arriving data packets is minimized assuming infinite size battery. For each objective, a convex optimization problem is formulated, the properties of the optimal transmission policies are identified, and an algorithm which computes an optimal transmission policy is proposed. Finally, based on the insights gained from the offline optimizations, low-complexity online algorithms performing close to the optimal dynamic programming solution for the throughput and energy maximization problems are developed under the assumption that the energy/data arrivals and channel states are known causally at the transmitter.Comment: published in IEEE Transactions on Wireless Communication

    Communicating Using an Energy Harvesting Transmitter: Optimum Policies Under Energy Storage Losses

    Full text link
    In this paper, short-term throughput optimal power allocation policies are derived for an energy harvesting transmitter with energy storage losses. In particular, the energy harvesting transmitter is equipped with a battery that loses a fraction of its stored energy. Both single user, i.e. one transmitter-one receiver, and the broadcast channel, i.e., one transmitter-multiple receiver settings are considered, initially with an infinite capacity battery. It is shown that the optimal policies for these models are threshold policies. Specifically, storing energy when harvested power is above an upper threshold, retrieving energy when harvested power is below a lower threshold, and transmitting with the harvested energy in between is shown to maximize the weighted sum-rate. It is observed that the two thresholds are related through the storage efficiency of the battery, and are nondecreasing during the transmission. The results are then extended to the case with finite battery capacity, where it is shown that a similar double-threshold structure arises but the thresholds are no longer monotonic. A dynamic program that yields an optimal online power allocation is derived, and is shown to have a similar double-threshold structure. A simpler online policy is proposed and observed to perform close to the optimal policy.Comment: Submitted to IEEE Transactions on Wireless Communications, August 201

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore