506 research outputs found

    Two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions

    Full text link
    An explicit two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions is derived, demonstrating details of interactions between two bright solitons, two dark solitons, as well as one bright soliton and one dark soliton. Shifts of soliton positions due to collisions are analytically obtained, which are irrespective of the bright or dark characters of the participating solitons.Comment: 11 pages, 4 figures. Phys. Lett. A 2006 (in press

    Directional Soliton and Breather Beams

    Get PDF
    Solitons and breathers are nonlinear modes that exist in a wide range of physical systems. They are fundamental solutions of a number of nonlinear wave evolution equations, including the uni-directional nonlinear Schr\"odinger equation (NLSE). We report the observation of slanted solitons and breathers propagating at an angle with respect to the direction of propagation of the wave field. As the coherence is diagonal, the scale in the crest direction becomes finite, consequently, a beam dynamics forms. Spatio-temporal measurements of the water surface elevation are obtained by stereo-reconstructing the positions of the floating markers placed on a regular lattice and recorded with two synchronized high-speed cameras. Experimental results, based on the predictions obtained from the (2D+1) hyperbolic NLSE equation, are in excellent agreement with the theory. Our study proves the existence of such unique and coherent wave packets and has serious implications for practical applications in optical sciences and physical oceanography. Moreover, unstable wave fields in this geometry may explain the formation of directional large amplitude rogue waves with a finite crest length within a wide range of nonlinear dispersive media, such as Bose-Einstein condensates, plasma, hydrodynamics and optics

    Exploring the Dynamics of Nonlocal Nonlinear Waves: Analytical Insights into the Extended Kadomtsev-Petviashvili Model

    Full text link
    The study of nonlocal nonlinear systems and their dynamics is a rapidly increasing field of research. In this study, we take a closer look at the extended nonlocal Kadomtsev-Petviashvili (enKP) model through a systematic analysis of explicit solutions. Using a superposed bilinearization approach, we obtained a bilinear form of the enKP equation and constructed soliton solutions. Our findings show that the nature of the resulting nonlinear waves, including the amplitude, width, localization, and velocity, can be controlled by arbitrary solution parameters. The solutions exhibited both symmetric and asymmetric characteristics, including localized bell-type bright solitons, superposed kink-bell-type and antikink-bell-type soliton profiles. The solitons arising in this nonlocal model only undergo elastic interactions while maintaining their initial identities and shifting phases. Additionally, we demonstrated the possibility of generating bound-soliton molecules and breathers with appropriately chosen soliton parameters. The results of this study offer valuable insights into the dynamics of localized nonlinear waves in higher-dimensional nonlocal nonlinear models.Comment: 22 pages, 10 figures; submitted to journa
    corecore