38 research outputs found

    Optimizing Bayesian Networks for Recognition of Driving Maneuvers to Meet the Automotive Requirements

    Get PDF

    A Learning-Based Framework for Two-Dimensional Vehicle Maneuver Prediction over V2V Networks

    Full text link
    Situational awareness in vehicular networks could be substantially improved utilizing reliable trajectory prediction methods. More precise situational awareness, in turn, results in notably better performance of critical safety applications, such as Forward Collision Warning (FCW), as well as comfort applications like Cooperative Adaptive Cruise Control (CACC). Therefore, vehicle trajectory prediction problem needs to be deeply investigated in order to come up with an end to end framework with enough precision required by the safety applications' controllers. This problem has been tackled in the literature using different methods. However, machine learning, which is a promising and emerging field with remarkable potential for time series prediction, has not been explored enough for this purpose. In this paper, a two-layer neural network-based system is developed which predicts the future values of vehicle parameters, such as velocity, acceleration, and yaw rate, in the first layer and then predicts the two-dimensional, i.e. longitudinal and lateral, trajectory points based on the first layer's outputs. The performance of the proposed framework has been evaluated in realistic cut-in scenarios from Safety Pilot Model Deployment (SPMD) dataset and the results show a noticeable improvement in the prediction accuracy in comparison with the kinematics model which is the dominant employed model by the automotive industry. Both ideal and nonideal communication circumstances have been investigated for our system evaluation. For non-ideal case, an estimation step is included in the framework before the parameter prediction block to handle the drawbacks of packet drops or sensor failures and reconstruct the time series of vehicle parameters at a desirable frequency

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Statistical‐based approach for driving style recognition using Bayesian probability with kernel density estimation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166283/1/itr2bf00581.pd

    Lane Change Classification and Prediction with Action Recognition Networks

    Full text link
    Anticipating lane change intentions of surrounding vehicles is crucial for efficient and safe driving decision making in an autonomous driving system. Previous works often adopt physical variables such as driving speed, acceleration and so forth for lane change classification. However, physical variables do not contain semantic information. Although 3D CNNs have been developing rapidly, the number of methods utilising action recognition models and appearance feature for lane change recognition is low, and they all require additional information to pre-process data. In this work, we propose an end-to-end framework including two action recognition methods for lane change recognition, using video data collected by cameras. Our method achieves the best lane change classification results using only the RGB video data of the PREVENTION dataset. Class activation maps demonstrate that action recognition models can efficiently extract lane change motions. A method to better extract motion clues is also proposed in this paper.Comment: Accepted by ECC
    corecore