

Aalborg Universitet

Optimizing Bayesian Networks for Recognition of Driving Maneuvers to Meet the
Automotive Requirements
Weidl, Galia; Madsen, Anders Læsø; Dietmar, Kasper; Breuel, Gabi

Published in:
Intelligent Control (ISIC), 2014 IEEE International Symposium

DOI (link to publication from Publisher):
10.1109/ISIC.2014.6967630

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Weidl, G., Madsen, A. L., Dietmar, K., & Breuel, G. (2014). Optimizing Bayesian Networks for Recognition of
Driving Maneuvers to Meet the Automotive Requirements. In Intelligent Control (ISIC), 2014 IEEE International
Symposium (pp. 1626 -1631). IEEE. DOI: 10.1109/ISIC.2014.6967630

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60600502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ISIC.2014.6967630
http://vbn.aau.dk/en/publications/optimizing-bayesian-networks-for-recognition-of-driving-maneuvers-to-meet-the-automotive-requirements(f2165ba1-001b-457c-96f9-01d9a1be3d77).html



Abstract— An Object Oriented Bayesian Network for

recognition of maneuver in highway traffic has demonstrated

an acceptably high recognition performance on a prototype car

with a Linux PC having an i7 processor. This paper is focusing

on keeping the high recognition performance of the original

OOBN, while evaluating alternative modelling techniques and

their impact on the memory and time requirements of an ECU-

processor for automotive applications. New challenges are

faced, when the prediction horizon is to be further extended.

I. INTRODUCTION

Identification and interpretation of traffic maneuvers will
become key elements of modern driver assistance systems.
Considerable effort has been put into early recognition of
maneuvers in real traffic scenarios and a number of
challenges have been identified. These involve: i) situations
develop quickly over time, and an automatic system will
therefore require information captured in the order of
milliseconds and ii) situations can only be reliably recognized
when considering the joint behavior of several sensor
measurements simultaneously, often featuring several
vehicles moving on adjacent traffic lanes. The situation
interpretation systems are further challenged by incomplete
knowledge, scene complexity and sensor uncertainties, which
has led to a focus on techniques for reasoning under
uncertainty. To deal with this, the automotive research has
investigated the feasibility of various probabilistic
approaches, e.g. based on Dempster-Shafer theory (DST),
dealing with measures of “belief”, which is a notion similar
to the probabilities in Bayesian networks (BN) in general and
Hidden Markov Models (HMM) in particular. HMM can be
viewed as an extension of a BN, containing a number of time
slices of the same BN at consequent time points (a.k.a.
dynamic BN or DBN). Examples of automotive applications
of DST involve detection of driving maneuver [1]. BN have
been used for the recognition of driving maneuvers like lane
change, overtake, turn [2], [3], cut-in maneuvers [4],
emergency braking [5], while HMM for identification of
driver intentions or turn maneuvers [6], [7], [8]. Recently
new approaches, combining Bayes classifiers and decision
trees [9] and others based on dynamic probabilistic
drivability maps [10] have been applied to model lane change
for driver assistance. Our recent approach for recognition of

* This project has received funding from the European Union’s 7th

Framework Programme for research, technological development and

demonstration under grant agreement no 619209.
Galia Weidl, Dietmar Kasper and Gabi Breuel are with the Daimler AG,

Research & Development, dept. Driving Automation, 71034 Böblingen

Germany (corresponding author phone: +49-1515-860-8069; fax: +49 711
3052131293; e-mail: galia.weidl@daimler.com).

Anders L. Madsen is with HUGIN EXPERT A/S, Aalborg, Denmark

(anders@hugin.com) and Aalborg University, Department of Computer Science

driving maneuvers utilizes as a first step the advantages of a
static object-oriented BN (OOBN) when it comes to
interrelated objects [11]. This offers a natural framework to
handle vehicle-lane and/or vehicle-vehicle relations [12].
These advantages are additionally boosted by exploitation of
the left-right symmetry of a lane-change-course.
Experimental drives with a prototype car in real highway
traffic have confirmed the functional feasibility of maneuver
recognition with high recognition accuracy and 0.67s earlier
recognition of maneuver as compared to an existing ACC
(Adaptive cruise control) system.

This paper represents the results of a feasibility study on
code optimization of the original OOBN model (denoted as
“origM”) for recognition of a driving maneuver - for details
on the mathematical modeling - see [12], [13], and [14]. Each
maneuver is characterized by a number of situation features,
building the dataset for situation analysis. This dataset
includes both information on the motion state of the current
and neighboring vehicles (e.g., position, speed, acceleration,
orientation within the lane, trajectory, and free space for a
maneuver), as well as information from the environment like
lane markings and road borders. This information is
incorporated in the model by object-object relations, where
an object can represent a vehicle (own or neighbor) as well as
a lane marking or lane boarders. The original OOBN model
has to be translated into C code in order to be used in the car
as its microcontroller has no file system. The original (static)
OOBN model required for the evaluation of one pair of
vehicles: 5.9 MB RAM and 3 ms of maximum processing
time on a Linux Platform with i7 CPU for the feature
computation and maneuver recognition. This computational
power is not available on the target automotive platform with
a cycle time of 20 ms, which should be shared by several
applications, not only by maneuver recognition.

Our current work is focused on the issue concerning how
to transfer an application of high recognition accuracy
(utilizing the high computational power of Linux computer
mounted in the experimental vehicle) into a computationally
feasible application on the automotive target platform of a
real vehicle, e.g. an ECU (electronic control unit). The last
has very constraining requirements, i.e. 1) Memory size:
RAM = 1MB (total), thereof max 250 kB for one application;
ROM = 4MB (total), thereof max 400 kB for one application.
2) Inference time of max 0.15ms and improved
computational performance; 3) Accuracy (keep comparable
to the original OOBN). These requirements make an
application, demonstrated to be successful on a Linux
environment (emulating the vehicle’s target platform),
infeasible to implement on a real car.

The c-code of the maneuver recognition application
determines the ROM requirements of the model and the

Optimizing Bayesian Networks for Recognition of Driving

Maneuvers to Meet the Automotive Requirements*

Galia Weidl, Anders L Madsen, Dietmar Kasper, and Gabi Breuel

G. Weidl, A. L. Madsen, D. Kasper, G. Breuel: “Optimizing Bayesian Networks of Driving maneuvers to Meet the Automotive

Requirements”, IEEE Multi-conference on Systems and Control, Antibes/Nice, France, 8-10 Oct.2014

mailto:galia.weidl@daimler.com
mailto:anders@hugin.com

associated code for handling evidence and calling appropriate
functions in the BN tool for performing belief update. The
RAM requirements are determined by the amount of memory
required by the BN tool for representing the necessary data
structures for performing belief update. This includes a
representation of the CPTs generated from expressions (and
not stored in ROM). The code optimization is evaluating
various modelling techniques in order to reach the
automotive requirements of the target platform.

This paper is organized as follows. The used method and
developed model for maneuver recognition are outlined in
section II and III, the used alternative modeling techniques
for optimization of the original model (origM) - in section IV
and the results - in section V. The discussion involves the
extension of the optimized model to dynamic OOBNs. The
goal of this extension is earlier recognition of driving
maneuvers and prediction of driving intentions, which will
ensure safer driving and improve the cruise control.

II. METHOD - BAYESIAN NETWORKS

A Bayesian network (a.k.a. causal probabilistic network or
graphical probabilistic model) BN:= (G, P) is a compact
model representation for reasoning under uncertainty.
Entities are represented as random variables V connected by
(causal) links L to build a directed acyclic graph G=(V,L).
The graphical structure G describes the dependence relations
between entities. A set of conditional probability distributions
(CPD) P = P(X | pa(X)) express the strengths of dependency
relations between a random variable X and its parents pa(X),
as specified by domain experts or as found in the data.

A BN provides a framework for systematically structured
knowledge representation of the problem domain. From a
computation perspective, a (discrete) BN is a representation
of a joint probability distribution over a set of variables V
enabling efficient inference ([15], [16], and [17]):
 𝑃(𝑉) = ∏ 𝑃(𝑋|𝑝𝑎(𝑋))𝑋∈𝑉 .

A BN supports belief update in terms of computing
posterior probability distributions P(X|e) given evidence e.
An OOBN is a hierarchical knowledge representation in
terms of classes and objects. The object-orientated modeling
is efficient for knowledge integration and taking advantage of
repetitive structures, allowing reusability by building model
libraries of generic fragments (OOBN-classes). In this work,
we have used the HUGIN tool [18], which is highly
optimized for inference in BNs, supports manual
specification of conditional probability tables (CPTs) and
generation of CPTs from mathematical expressions relating
the state values to parent configurations. To support the
specification of expressions, variables can be categorized
according to subtypes Numbered, Interval, Boolean and
Label reflecting how variable states are interpreted when
generating CPTs from expressions.

III. THE OOBN MODEL FOR MANEUVER RECOGNITION

The causal probabilistic treatment of situation features
allows exploiting heterogeneous sources of information and
the quantitative incorporation of uncertainties in the
measured signals. The general structure of the OOBN model
consists of a number of abstraction levels (see Fig. 1): all

measured and/or computed signals S are handled with their
uncertainties σ

2
. These are represented as object classes at the

lowest level (class S) of the OOBN. The real values µ of
evidence signals are used at the next level of hierarchy to
evaluate the hypotheses (class H). The combined evaluation
of several hypotheses results in the prediction of events, class
E. In our automotive case: the events are modeling traffic
maneuvers of the own and surrounding vehicles: lane follow,
lane change (cut-in, cut-out), see [12], [13].

The alternative modeling at the class levels of sensors S
and hypotheses H for the purpose of reduction of necessary
memory size is discussed in section IV.A, B. The highest
level of abstraction (class E: Event) is representing just the
logical relations between vehicles and predicts their intended
maneuvers. The abstraction levels (classes S, H, E) of the
OOBN are shortly described below.

Fig. 1. OOBN model for the prediction of an event (maneuver)

The observations characterizing a situation are acquired
from sensors and computations based on measured data. If
the measurement instrument is not functioning properly (due
to senor noise or fault), then the sensor-reading
(S_MEASURED) and the real variable (S_REAL) under
measurement need not to be the same. This fact imposes the
causal model structure as shown in Fig. 2. The sensor-reading
of any measured variable is conditionally dependent on
random changes in two variables: real value under
measurement (S_REAL) and sensor fault (S_SIGMA).

Fig. 2. BN fragment for modeling of sensor’s uncertainties with

a discrete MEASURED variable

The situation features used for maneuver recognition are
modeled as three BN-fragments (hypotheses): lateral
evidence LE; trajectory TRAJ; and occupancy schedule grid
OCCGRID. For more details see [13], [14]. The hypothesis LE
is shown in Fig. 3. Its CPT is represented by a sigmoid
function to expresses the growing probability for LE (and
possible lane change) when the vehicle is coming closer to
the lane marking (modeled by O_LAT_MEASURED) by growing
lateral velocity (modeled by V_LAT_ MEASURED).

Fig. 3. BN fragment modeling the hypothesis LE with discrete

variables V_LAT_MEASURED and O_LAT_MEASURED.

IV. ALTERNATIVE MODELING FOR CODE OPTIMIZATION

A. Alternative handling of uncertainties in observations

 To reduce the RAM and ROM size, we have studied a
number of modelling approaches such as the use of variables
with linear Gaussian (CG) distributions, function nodes [19],
the use of expressions to specify CPTs compactly and a
divide-and-conquer approach to belief update.

An alternative modeling of the sensor uncertainty is
utilizing a CG distribution, instead of the discrete one. For
this purpose, a discrete random variable modelling a sensor
measurement is replaced by a continuous random variable
with a continuous linear Gaussian (normal) conditional
distribution function N(𝑆𝜇, 𝑆𝜎2) where the mean is a linear

function of the continuous parents. It will be denoted in the
BN model by an ellipse with a double line boarder (as shown
in Fig. 4). A BN with CG nodes is referred to as a
Conditional Linear Gaussian (CLG) BN. It induces a
multivariate normal mixture density on the form:

𝑃(Δ)𝑓(Γ) = ∏ 𝑃(𝑋|𝑝𝑎(𝑋)) ∏ 𝑓(𝑌|𝑝𝑎(𝑌))𝑌∈Γ𝑋∈Δ ,

where Δ are the discrete and Γ are the continuous variables.

The continuous Gaussian representation reproduces the
discrete one up to slightly stronger concentration around
MEASURED. This is since two nodes MEASURED and
REAL (of type Interval in the discrete case) have been
replaced with type Numbered in its CG modification. For the
SIGMA node, we have used the middle point in each interval
to specify the variance in the child.

The LE fragment with CG nodes instead of Interval nodes
for the MEASURED variables will have a significantly
reduced memory requirement as the CG distribution is
significantly smaller than the corresponding CPT for the
Interval node. Moreover, memory has been saved by
instantiating - for each time cycle - the evidence on the
random variable SIGMA as a parameter directly into the c-
code (as opposed to having the SIGMA represented as a node
in the network). Thus, the SIGMA node is removed from the
model (see e.g. Fig. 4) and for each case we set the
corresponding SIGMA instead of entering evidence. The
obtained model is more “precise” than the original model
where SIGMA is discretized.

Fig. 4. BN-fragment demonstrating the no-SIGMA approach

In the original discrete BN-fragments for modeling of
sensor uncertainties, some nodes have been modeled with an
equi-distant discretization. Moreover, extra states have been
added just for the purpose of robust recognition performance,
which leads to increased size of RAM memory. Alternative
discretization, with half of the number of states has been
implemented (to meet the memory requirement) together
with non-uniform intervals of discretization. This has allowed
meeting both requirements on available memory size and
recognition performance. The above changes in modeling had
an impact on the BN fragment (Fig. 3), as shown in Fig. 4.

This has been implemented analogically to all three
fragments (hypotheses). Further reduction of memory has
been achieved by introducing Function nodes as described
below.

B. Function Nodes

A function (FCN) node represents a real-valued function,
that depends on (some or all of) the parents of the node.
Function nodes are not (directly) involved in the inference
process - evidence cannot be specified for function nodes, but
the function associated with the node can be evaluated using
the results of inference or simulation as input. That is, FCN
nodes only support forward reasoning. FCN nodes are
exploited to reduce the memory requirements of the three
network fragments LE, TRAJ and OCCGRID. For instance,
the sigmoid-CPD from the original LE fragment (see Fig. 3)
is replaced with a function node of the type described above.
In the LE network with FCNs, the FCN LE_F_O represents
the value of an expression on this form computed after belief
update in the fragment with the three variables O_LAT_REAL,
O_LAT_SIGMA and O_LAT_MEASURED:

 ∑ 𝑃(𝑂𝐿𝐴𝑇𝑅𝐸𝐴𝐿
= 𝑣𝑖) ∗ 𝑓(𝑣𝑖)

𝑛
𝑖=1 ,

where 𝑣𝑖 for i=1,..,n are the values of O_LAT_REAL and
𝑓(𝑣𝑖) is a logistic regression function in O_LAT_REAL.

Fig. 5. LE combining both CG and FCN nodes

The computed value is passed to the child FCN and is
used in the evaluation of its expression. While Fig. 5
combines CG “measurement” variables with two function-
nodes of the sigmoid (logistic)-CPD. The RAM requirement
relates to the run-time objects used for inference, i.e. belief
update. Different modelling approaches will produce
different RAM requirements and have different time
performance.

In the complete OOBN, the three network fragments LE,
TRAJ and OCCGRID are instantiated more than once. This
increases the memory requirements. To reduce memory
requirements, belief update can be performed using a divide-
and-conquer strategy where the LE, TRAJ and OCCGRID
are processed more than once and the results are transferred
to the remaining (logical) parts of the network.

C. The divide-and-conquer strategy (DC)

There are a number of options to consider for a divide-
and-conquer strategy. One option is to use the classification
result from each fragment (i.e., LE, TRAJ or OCCGRID) and
combine the results using pure logic. This has the
disadvantage for the inference process, that the uncertainty in
a specific classification is not reflected and not taken into
account in subsequent steps. This means that the DC
approach will not produce the same results as origM. The
other option, and the one pursued, is to split the network into
components and use the posterior distribution of a
classification node, e.g., LE, as likelihood over the

corresponding LE node in a "downstream" network. The
network fragments, created to support the divide-and-conquer
strategy are shown in Fig. 6 and Fig. 7A), B) and correspond
to the H and E classes of Fig. 1. In Fig. 6 the object class
LANEMARKCROSS (LMC) of the original OOBN model is
instantiated using the probabilities computed in the
hypotheses classes TRAJ, LE, OCCGRID. In Fig. 7A) the
object class LANECHANGE (LC) represents the vehicle-
lane marking relation and is instantiated by the probabilities,
obtained from the hypothesis classes LMC towards left and
right. In Fig. 7B) the event class HQMVT represents the
vehicle-vehicle relation QMVT of two cars together with
their relative position to each other POSDESCR. It infers the
recognition of predicted maneuver, after instantiation by the
probabilities, obtained from the object classes LC.

Fig. 6. The object class LANEMARKCROSS

Fig. 7 A) Object class LANECHANGE. B) Event class HQMVT

V. OPTIMIZATION & EXPERIMENTAL RESULTS

The performance testing is done using C code generated
from origM. The generated code is then compiled into a test
program using a C compiler (gcc v4.5.2) on a Linux
computer. The numbers reported depends on the hardware,
software and operating system. Thus they should be
interpreted only in relation to the percentage of reduction as
summarized in TABLE I. where the following definitions are
introduced: “Initially” denotes the required memory before
the BN is created from the specification of classes; AD is the
required memory after the BN is created. The comparison of
the first and second column shows how much additional
memory is required to represent the model in memory using
tables as compared to expressions. RAM is the required
memory size after the junction tree structure is created. The
optimization considered also different compiling options. By
default the models have been compiled using “-O2”, resulting
in initial memory size of 176 kB, while the use of other
compiler options has increased the required memory.

TABLE I. shows the model size of different model
configurations. All models use the Table Generator (TG) to
generate CPTs from expressions as opposed to storing a copy
of the CPT in source code. DC refers to the divide-and-
conquer approach and “⌐σ” refers to the approach where
SIGMA nodes are not included in the model and the
observed variance is set as a parameter in the model for each
case. Both origM and origM(TG) have the same time

performance as the TG is not used as part of belief update.
origM and origM(TG) are the same model from a belief
update point of view.

TABLE I. MEMORY SIZE AND TIME PERFORMANCE

The following notations have been introduced to denote
modifications of the original model origM, where the
corresponding modeling techniques have been implemented.
That is, if the sensor model uses CG nodes instead of Interval
nodes to represent the uncertainty in the measurement, then
this is denoted in the model name as “_CG”. If the CPT of a
hypothesis variable, which has been initially modeled with a
discrete sigmoid distribution, has been modified by the use of
function node - this is denoted in the model name as “_FCN”.
The number 16 denotes the reduced number of states to 16
from originally 32 discrete states of the random variables.

For comparison between the alternative modeling, the
achieved reduction is denoted in % below the corresponding
number. The original and the (time-)best in class optimized
OOBNs are highlighted in bold. Another evaluation has
focused on the time performance of the model being tested.
The reduction of processing time has been computed as Δt %
= 1-(t1/t0), where t1 is the optimized vs. the originally
measured time performance t0. The average time is a general
criterion, used to compare the time performance of different
models. For automotive applications, it is important to know
the maximal time of inference tmax in order to ensure, that the
time performance of the model is within the allowed cycle
time. The tmax of origM has been reduced by 53% (due to the
use of DC with CG and no SIGMA approaches), i.e. from 3
ms to 1.42 ms. If FCN nodes are used in addition, this shows
a further reduction of 43 % in the average time: from tavg.

=1.27 ms to 0.72 ms and 97% of RAM reduction (from
5,9MB to 176kB).The goal has been to sustain at least the
same accuracy level, which has been evaluated by the
receiver operating characteristics (ROC) analysis [21]. A
comparison has been performed at all levels with focus on the
maneuver LC (Lane Change). From ROC when considering 1
second history of the maneuver data stream, the area under
the curve AUC = 0.96. And for the 2 s history: AUC ROC =
0.83. As expected, the results for 1 sec data history are better
than the results for 2 sec. The accuracy of the original model
didn’t change significantly as a result of alternative modeling

From OOBN to

compiled c-code

Initially
[kB]

AD

[kB]

RAM
[kB]

Target

250kB

ROM

[B]

Target
400 kB

Time [ms]

performance

tmax / tavg

target

0.15ms

origM 336 3272 5888 783300 tmax=3 ms

tavg. =1.27ms

origM (TG) 336 3400 6052 566135
tmax=3 ms

tavg. =1.27 ms

origM (TG) –O2 176 3240 5892 539076 same

origM_CG_FCN

⌐σ DC (TG)
336 468

468

(-92%

442830

(-46%)

tmax=2 ms

tavg. =1.35 ms

origM _CG_FCN
⌐σ DC (TG) –O2

176 308
308

(-95%
390930
(-50%)

tmax=2 ms

tavg. =0.94 ms

origM_CG_FCN

⌐σ DC (TG), 16
176 176

176

(-97%

386709

(-51%)

tmax=3.05 ms

tavg. =0.72 ms

(-43%)

origM _CG⌐σ

DC (TG), 16
176 176

308

(-95%

374393

(-52%)

tmax=1.42 ms

(-53%)

tavg. =1.02 ms

A) B)

techniques. Thus, a tradeoff for the best performance of
ROM, RAM and time shows at the OOBN with combination
of CG and FCN nodes with reduced number of 16 states, no
σ and divide-and-conquer (DC)-implementation (TG).

A list of options for improving the time performance of
the system includes parallelization and improved hardware as
well as modeling and implementation techniques that may
have an impact on time performance. For instance, the single
logic network in §IV.C. for the DC approach (as opposed to
performing DC on the logic part of origM producing
additional small networks) combined with parallel processing
of the sub-networks may lead to performance improvements.
This can even be combined with the use of the save-to-
memory functionality of the HUGIN Decision Engine. The
save-to-memory functionality will store a copy of the clique
tables in memory in effect increasing the RAM requirements.
The RAM requirements are already satisfied and it is,
therefore, potentially possible to use additional RAM to
improve the time performance. This will trade space for time.
The objective would then be to find the optimal balance.

VI. EXTENSION TO A DYNAMIC MODEL

Although the performed optimization has satisfied the
memory requirements of the target platform, it is still
necessary to consider the time requirements. In addition,
there is a desire to consider options for improving the
recognition performance by extending the prediction horizon,
which is of advantage for the adaptive cruise control.
Consider a highway scenario involving a vehicle driving in a
lane with three other vehicles driving in three different lanes
in front of it. The information describing such scenarios
typically consists of 252 observations acquired with fixed
sampling rate (in the order of milliseconds). If a test drive
from only one hour is to be analyzed for adaptation of the
model parameters, this will result in several millions of
database records. This requires efficient algorithms and
methods that must be scaled up to handle the extremely large
volumes of data (compared to the equipment available for on-
line processing) and which should ensure that the systems
developed must be able to operate at the time scale of the
automotive processor they are designed to support.

With this motivation, each maneuver can be considered as
a process, developing in time, i.e. as data stream given by a
time sequence of the transition from lane follow into lane
change maneuver. For this purpose, the EU-STREP research
project “Analysis of MassIve Data Streams” (AMIDST) has
been initiated [20]. The automotive data-sets used in
AMIDST are extremely large. This heterogeneous raw data
are measured by radar and stereo cameras, which after
filtering and preprocessing are fused to reduce the initial data
complexity, to improve the data quality and to generate the
object data for situation analysis.

 The results described in section V have prepared the
static OOBN on maneuver recognition for its extension into a
dynamic OOBN (DBN). Otherwise an OOBN, which does
not meet the requirements of the target platform, would be a
"no go case" for further extension into a DBN. The DBN is
expected to help with the satisfaction of the requirement on
earlier prognostics of maneuver. This dynamic extension
involves copies of the static OOBN for different number of

time steps in the time window (e.g. see Fig. 8 where the two
top nodes are temporal clones defining the share belief state
between consecutive time steps creating a first order Markov
process. Thus, it sets even higher requirement (see Table II)
on memory size and on the efficiency of algorithms for
processing of streaming data.

Fig. 8 A DBN fragments for the hypothesis LE.

TABLE II. LE MODEL

SIZE FOR STAIC AND DYNAMIC

BN WITH VARIOUS MODELING

ALTERNATIVES

The DBN incor-
porates the trend of
change for the real
values, where their
physics relations are
represented as causal
dependencies between
the time steps dt, e.g. in
Fig. 8 the transition
function of O_LAT at
time t, O (t), is modeled
as Gaussian distribution,
truncated on the range of
the real value. Its mean
is affected by O(t-1),
and by V_LAT at time t-
1, v(t-1):

O(t)=O(t-1)+v(t-1)·dt +N

where N denotes a white noise N(0,σ
2
) due to possible

acceleration term (a·dt
2
)/2, which is assumed to be small for a

time step in the order of 10
2
milliseconds.

 The shaded nodes represent the development of the real
values of observations over several time steps in the time
window. Thus, their trend estimation contributes to the
prediction of probability of transition from a lane follow to a
lane change maneuver.

In order to assess the complexity due to the use of dynamic

BN models, Table II shows the total CPT size and total

clique table size for the LE fragment. (Note: a clique is a

node in the secondary computational structure used for

belief update. The table size can be considered as a measure

of computational complexity.) Here on the LE fragment are

implemented different modelling alternatives and prediction

horizon with 1, 3 or 10 time slices. The same computational

complexity can be expected for the TRAJ and OCCGRID

network fragments. From here it is obvious that the model

complexity will grow at all three levels of the OOBN (see

Fig. 1). Thus, meeting the severe requirements of the target

 LE (TG)

total

CPT

size
[B]

total

clique

table size
[B]

LE origM 47988 47880

 DBN 1 75888 101880

 DBN 3 75888 305640

 DBN 10 75888 1018800

 FCN DBN 1 74088 73980

 FCN DBN 3 74088 274140

 FCN DBN 10 74088 974700

 CG DBN 1 32688 60120

 CG DBN 3 32688 180360

 CG DBN 10 32688 601200

 FCN CG DBN1 30888 32220

 FCN CG DBN3 30888 148860

 FCN CG DBN10 30888 557100

 16 DBN 1 29520 33280

 16 DBN 3 29520 99840

 16 DBN 10 29520 332800

platform, while operating with streaming data becomes even

more challenging. The solution will be addressed for this

and similar use cases in AMIDST.
A dynamic BN (DBN) induces a number of constraints on

the compilation of the network into a computational
structure. One constraint relates to transferring the belief state
from one time slice to the next where the belief state is the
probability distribution over the variables shared by
neighboring time slices. In general, the belief state is
transferred as a joint distribution. This means that
approximate methods such as [22] may have to be considered
for meeting the requirements of the target platform.

AMIDST will continue the work on "Maneuver
recognition and prediction" by implementing DBN
incorporating the trend analysis over time of the already
considered features in the original OOBN in order to be able
to produce even earlier recognition on intended lane change
maneuvers. Moreover, early prediction of maneuver
intentions can be achieved even before any development of
the trend for lateral evidence LE has been observed. This will
be including as a first indication of possible lane change
intention, the relative dynamics between one vehicle (host or
object) and the vehicles in front of it on the same lane.

VII. CONCLUSIONS

The accuracy of the original model did not change
significantly, since we have implemented alternative
modeling techniques. The evaluation of their impact shows
that they meet the automotive requirements on memory size
and that they reduce the average computation time for
inference on recognized maneuvers. This has been achieved
under sustained classifier recognition performance, measured
by receiver operating characteristics (ROC curves) with AUC
= 0.96, based on the evaluation of 1 second of maneuver
history and AUC = 0.83 with 2 seconds history before
crossing of the lane marking. The target requirements on
RAM and ROM memory size (for the static OOBN) have
been achieved (with a reduction of 97% resulting in 176 kB
RAM as compared to the initial 5,9 RAM size) at comparable
recognition accuracy, while the average time performance
has been reduced by 43% to 0.72 ms. The best optimization
has been achieved with a combination of continuous
Gaussian CG nodes for handling of the uncertainties in
measurements, together with FCN nodes for the modeling of
hypotheses and DC-approach for the entire model.

In summary, these approaches all contribute to reaching

the optimization objectives. The results of the performance

evaluations show possible trade-offs. The divide-and-

conquer and no-SIGMA-nodes approaches seem to be

essential to meet the RAM requirements. The no-SIGMA-

nodes approach is based on the CG approach (as tables

should otherwise be generated for each case, which might be

expensive) and finally the FCN approach eliminates (large)

CPTs associated with the hypotheses LE and TRAJ.

To improve the prediction horizon, we consider in

AMIDST a maneuver as a continuous dynamic process and

model it with the trend of the situation features as indication

of a persisting system state condition. This requires the use

of dynamic object oriented Bayesian networks.

REFERENCES

[1] M. Tsogas, X. Dai, G. Thomaidis, P. Lytrivis, and A. Amditis,

Detection of maneuvers using evidence theory, IEEE Intelligent
Vehicles Symposium, Eindhoven University of Technology,

Eindhoven, The Netherlands, 2008.

[2] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell, and
J. Weber, Automatic Symbolic Traffic Scene Analysis Using Belief

Networks, AAAI-94 Proceedings, 1994.

[3] D. Meyer-Delius, C. Plagemann, G. von Wichert, W. Feiten, G.
Lawitzky, and W. Burgard, A Probabilistic Relational Model for

Characterizing Situations in Dynamic Multi-Agent Systems, In Proc.

of the 31th Annual Conference of the German Classification Society
on Data Analysis, Machine Learning, and Applications (GFKL),

Freiburg, Germany, 2007.

[4] I. Dagli. Erkennung von Einscherer-Situationen für
Abstands¬regel¬tempomaten. PhD-Thesis: Tübingen University,

Germany, 2005.

[5] J. Schneider, A. Wilde, and K. Naab, Probabilistic Approach for
Modeling and Identifying Driving Situations, IEEE Intelligent

Vehicles Symposium, Eindhoven University of Technology,

Eindhoven, The Netherlands, 2008.

[6] Christoph Stiller, Georg F¨arber, and S¨oren Kammel, Cooperative

Cognitive Automobiles, Proceedings of the IEEE Intelligent Vehicles

Symposium, Istanbul, Turkey, 2007.
[7] H. Berndt, J. Emmert, and K. Dietmayer, Continuous Driver Intention

Recognition with Hidden Markov Models, Proceedings of the 11th

International IEEE Conference on Intelligent Transportation Systems,
Beijing, China, 2008.

[8] P. Boyraz, M. Acar, and D. Kerr, Signal Modelling and Hidden

Markov Models for Driving Manoeuvre Recognition and Driver Fault
Diagnosis in an urban road scenario, Proceedings of the IEEE

Intelligent Vehicles Symposium, Istanbul, Turkey, 2007.

[9] Y. Hou, P.Edara, and C.Sun, Modeling Mandatory Lane Changing
Using Bayes Classifier and Decision Trees, IEEE Transactions on

Intelligent Transportation Systems, 2014

[10] S.Sivaraman, and M. Trivedi, Dynamic Probabilistic Drivability Maps
for Lane Change and Merge Driver Assistance, IEEE Transactions on

Intelligent Transportation Systems, 2014

[11] D. Koller, and A. Pfeffer, Object-Oriented Bayesian Networks

(OOBN), In Proceedings of the Thirteenth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-97), pages 302-313,

Providence, Rhode Island, August 1-3, 1997.
[12] D. Kasper, G. Weidl, T. Dang, G. Breuel, A. Tamke, and W.

Rosenstiel. “Object-oriented Bayesian networks for detection of lane

change maneuvers”, in Proceedings of the Intelligent Vehicles
Symposium (IV) 2011 IEEE, 2011.

[13] D. Kasper, G. Weidl, T. Dang, G. Breuel, A. Tamke, A. Wedel, and

W. Rosenstiel. “Object-oriented Bayesian networks for detection of
lane change maneuvers”. IEEE Intelligent Transportation Systems

Magazine, vol.4, pp. 19–31, 2012.

[14] D.Kasper, Erkennung von Fahrmanöovern mit object-orientierten
Bayes-Netzen in Autobahnszenarien, PhD-Thesis: Tübingen

University 2013, Germany, http://tobias-lib.uni-
tuebingen.de/volltexte/2013/6800/pdf/thesis_kasper_20130426.pdf

[15] Pearl J. (1988). Probabilistic Reasoning in Intelligent Systems,

Morgan Kaufmann Publishers
[16] T.D. Nielsen and F. V. Jensen, Bayesian Networks and Decision

Graphs, ser. Information Science and Statistics. Springer, 2007.

[17] N. Friedman and D. Koller, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[18] A. L. Madsen, F. Jensen, U. B. Kjaerulff, M. Lang (2005). HUGIN -

The Tool for Bayesian Networks and Influence Diagrams, Intl.
Journal of Artificial Intelligence Tools 14 (3), pp. 507-543

[19] A. L. Madsen, F. Jensen, M. Karlsen, and Søndberg-Jeppesen.

Bayesian Networks with Function Nodes. In Proceedings of the 7th
European Workshop on Probabilistic Graphical Models. 2014. To

appear.

[20] http://www.amidst.eu
[21] T. Fawcett. An introduction to roc analysis. Pattern Recogn. Lett.

27(8):861–874, June 2006

[22] X. Boyen and D. Koller. Tractable inference for complex stochastic
processes. In Proceedings of the Fourteenth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-98), pages 33–42, 1998

