3 research outputs found

    Intersecting Color Manifolds

    Get PDF
    Logvinenko’s color atlas theory provides a structure in which a complete set of color-equivalent material and illumination pairs can be generated to match any given input RGB color. In chromaticity space, the set of such pairs forms a 2-dimensional manifold embedded in a 4-dimensional space. For singleilluminant scenes, the illumination for different input RGB values must be contained in all the corresponding manifolds. The proposed illumination-estimation method estimates the scene illumination based on calculating the intersection of the illuminant components of the respective manifolds through a Hough-like voting process. Overall, the performance on the two datasets for which camera sensitivity functions are available is comparable to existing methods. The advantage of the formulating the illumination-estimation in terms of manifold intersection is that it expresses the constraints provided by each available RGB measurement within a sound theoretical foundation

    Gaussian-Metamer-Based Prediction of Colour Stimulus Change under Illuminant Change

    Get PDF
    Predicting how the LMS cone response to light reflected from a surface changes with changing lighting conditions is a long-standing and important problem. It arises in white balancing digital imagery, and when re-rendering printed material for viewing under a second illuminant (e.g., changing from D65 to F11). Von Kries scaling is perhaps the most common approach to predicting what LMS cone response will arise under a second illuminant given the LMS under a first illuminant. We approach this prediction problem, instead, from the perspective of Logvinenko’s new colour atlas, and obtain better results than with von Kries scaling

    Object-colour space revisited

    No full text
    corecore