56,750 research outputs found

    Knowledge sharing between design and manufacture

    Get PDF
    Object-oriented modelling has become an established technique for product and manufacturing knowledge representation. Various models offering generalised classes and class hierarchies have been proposed for this purpose. Additional bespoke classes are however typically required for specific domain representations. This causes problems when knowledge needs to be shared between domains using different models to describe common entities. These issues are especially complex when several systems are involved. For example, a designer accessing product, manufacturing, and third party systems may face multiple definitions of components, facilities and processes. This paper proposes a model that addresses some of these issues. The proposed model can describe manufacturing knowledge without additional bespoke classes. The detailed semantics of the model are based on recent work on ontologies, notably the Process Specification Language (PSL). Whilst PSL provides detailed semantics, it is not inherently object-oriented. The integration of PSL with object-oriented modelling methods is therefore the principle contribution of this work

    Novel analysis and modelling methodologies applied to pultrusion and other processes

    Get PDF
    Often a manufacturing process may be a bottleneck or critical to a business. This thesis focuses on the analysis and modelling of such processest, to both better understand them, and to support the enhancement of quality or output capability of the process. The main thrusts of this thesis therefore are: To model inter-process physics, inter-relationships, and complex processes in a manner that enables re-exploitation, re-interpretation and reuse of this knowledge and generic elements e.g. using Object Oriented (00) & Qualitative Modelling (QM) techniques. This involves the development of superior process models to capture process complexity and reuse any generic elements; To demonstrate advanced modelling and simulation techniques (e.g. Artificial Neural Networks(ANN), Rule-Based-Systems (RBS), and statistical modelling) on a number of complex manufacturing case studies; To gain a better understanding of the physics and process inter-relationships exhibited in a number of complex manufacturing processes (e.g. pultrusion, bioprocess, and logistics) using analysis and modelling. To these ends, both a novel Object Oriented Qualitative (Problem) Analysis (OOQA) methodology, and a novel Artificial Neural Network Process Modelling (ANNPM) methodology were developed and applied to a number of complex manufacturing case studies- thermoset and thermoplastic pultrusion, bioprocess reactor, and a logistics supply chain. It has been shown that these methodologies and the models developed support capture of complex process inter-relationships, enable reuse of generic elements, support effective variable selection for ANN models, and perform well as a predictor of process properties. In particular the ANN pultrusion models, using laboratory data from IKV, Aachen and Pera, Melton Mowbray, predicted product properties very well

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Cloud-based manufacturing-as-a-service environment for customized products

    Get PDF
    This paper describes the paradigm of cloud-based services which are used to envisage a new generation of configurable manufacturing systems. Unlike previous approaches to mass customization (that simply reprogram individual machines to produce specific shapes) the system reported here is intended to enable the customized production of technologically complex products by dynamically configuring a manufacturing supply chain. In order to realize such a system, the resources (i.e. production capabilities) have to be designed to support collaboration throughout the whole production network, including their adaption to customer-specific production. The flexible service composition as well as the appropriate IT services required for its realization show many analogies with common cloud computing approaches. For this reason, this paper describes the motivation and challenges that are related to cloud-based manufacturing and illustrates emerging technologies supporting this vision byestablishing an appropriate Manufacturing-as-a-Service environment based on manufacturing service descriptions

    On the Identification of Agents in the Design of Production Control Systems

    No full text
    This paper describes a methodology that is being developed for designing and building agent-based systems for the domain of production control. In particular, this paper deals with the steps that are involved in identifying the agents and in specifying their responsibilities. The methodology aims to be usable by engineers who have a background in production control but who have no prior experience in agent technology. For this reason, the methodology needs to be very prescriptive with respect to the agent-related aspects of design

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575
    corecore