14,476 research outputs found

    DR.CPO: Diversified and Realistic 3D Augmentation via Iterative Construction, Random Placement, and HPR Occlusion

    Full text link
    In autonomous driving, data augmentation is commonly used for improving 3D object detection. The most basic methods include insertion of copied objects and rotation and scaling of the entire training frame. Numerous variants have been developed as well. The existing methods, however, are considerably limited when compared to the variety of the real world possibilities. In this work, we develop a diversified and realistic augmentation method that can flexibly construct a whole-body object, freely locate and rotate the object, and apply self-occlusion and external-occlusion accordingly. To improve the diversity of the whole-body object construction, we develop an iterative method that stochastically combines multiple objects observed from the real world into a single object. Unlike the existing augmentation methods, the constructed objects can be randomly located and rotated in the training frame because proper occlusions can be reflected to the whole-body objects in the final step. Finally, proper self-occlusion at each local object level and external-occlusion at the global frame level are applied using the Hidden Point Removal (HPR) algorithm that is computationally efficient. HPR is also used for adaptively controlling the point density of each object according to the object's distance from the LiDAR. Experiment results show that the proposed DR.CPO algorithm is data-efficient and model-agnostic without incurring any computational overhead. Also, DR.CPO can improve mAP performance by 2.08% when compared to the best 3D detection result known for KITTI dataset. The code is available at https://github.com/SNU-DRL/DRCPO.gi

    An improved Gaussian Mixture Model with post-processing for multiple object detection in surveillance video analytics

    Get PDF
    Gaussian Mixture Model (GMM) is an effective method for extracting foreground objects from video sequences. However, GMM fails to detect the object in challenging scenarios like the presence of shadow, occlusion, complex backgrounds, etc. To handle these challenges, intrinsic and extrinsic enhancement is required in traditional GMM. This paper presents a novel framework that combines improved GMM with postprocessing for multiple object detection. In the proposed system, GMM with parameter initialization is considered an intrinsic improvement. Video preprocessing and postprocessing are considered extrinsic improvements. Integration of morphological operation with GMM helps for better segmentation than traditional GMM, and it also helps to increase detection performance by reducing false positives. Video preprocessing is the process of noise removal that prepares input video ready for further processing. In the final step gradient of morphological operations is used for postprocessing. The proposed approach was tested on challenging surveillance video sequences from benchmark datasets such as PETS 2009 and CD 2014(Change Detection). The experimental results are compared using ground truth and performance evaluation metrics. The results show that the proposed approach performs better than GMM, and the method can detect the object effectively even in illumination variation and partial occlusion

    A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning

    Get PDF
    Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to queue estimation, speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a total of 70 research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the preferable way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Networks (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach

    Visual marking and change blindness : moving occluders and transient masks neutralize shape changes to ignored objects

    Get PDF
    Visual search efficiency improves by presenting (previewing) one set of distractors before the target and remaining distractor items (D. G. Watson & G. W. Humphreys, 1997). Previous work has shown that this preview benefit is abolished if the old items change their shape when the new items are added (e.g., D. G. Watson & G. W. Humphreys, 2002). Here we present 5 experiments that examined whether such object changes are still effective in recapturing attention if the changes occur while the previewed objects are occluded or masked. Overall, the findings suggest that masking transients are effective in preventing both object changes and the presentation of new objects from capturing attention in time-based visual search conditions. The findings are discussed in relation to theories of change blindness, new object capture, and the ecological properties of time-based visual selection. (PsycINFO Database Record (c) 2010 APA, all rights reserved

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods
    corecore