1,566 research outputs found

    Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

    Full text link
    In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.Comment: submitted to IROS 201

    Frontiers of robotic endoscopic capsules: a review

    Get PDF
    Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures

    Analyzing Human-Human Interactions: A Survey

    Full text link
    Many videos depict people, and it is their interactions that inform us of their activities, relation to one another and the cultural and social setting. With advances in human action recognition, researchers have begun to address the automated recognition of these human-human interactions from video. The main challenges stem from dealing with the considerable variation in recording setting, the appearance of the people depicted and the coordinated performance of their interaction. This survey provides a summary of these challenges and datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection methods. We focus on recent, promising work based on deep learning and convolutional neural networks (CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze and, eventually, understand social human actions

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Enhanced Exploration of Neural Network Models for Indoor Human Monitoring

    Get PDF
    Indoor human monitoring can enable or enhance a wide range of applications, from medical to security and home or building automation. For effective ubiquitous deployment, the monitoring system should be easy to install and unobtrusive, reliable, low cost, tagless, and privacy-aware. Long-range capacitive sensors are good candidates, but they can be susceptible to environmental electromagnetic noise and require special signal processing. Neural networks (NNs), especially 1D convolutional neural networks (1D-CNNs), excel at extracting information and rejecting noise, but they lose important relationships in max/average pooling operations. We investigate the performance of NN architectures for time series analysis without this shortcoming, the capsule networks that use dynamic routing, and the temporal convolutional networks (TCNs) that use dilated convolutions to preserve input resolution across layers and extend their receptive field with fewer layers. The networks are optimized for both inference accuracy and resource consumption using two independent state-of-the-art methods, neural architecture search and knowledge distillation. Experimental results show that the TCN architecture performs the best, achieving 12.7% lower inference loss with 73.3% less resource consumption than the best 1D-CNN when processing noisy capacitive sensor data for indoor human localization and tracking
    • …
    corecore