774 research outputs found

    SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network for Object Segmentation

    Full text link
    This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets

    Distilling Localization for Self-Supervised Representation Learning

    Full text link
    Recent progress in contrastive learning has revolutionized unsupervised representation learning. Concretely, multiple views (augmentations) from the same image are encouraged to map to the similar embeddings, while views from different images are pulled apart. In this paper, through visualizing and diagnosing classification errors, we observe that current contrastive models are ineffective at localizing the foreground object, limiting their ability to extract discriminative high-level features. This is due to the fact that view generation process considers pixels in an image uniformly. To address this problem, we propose a data-driven approach for learning invariance to backgrounds. It first estimates foreground saliency in images and then creates augmentations by copy-and-pasting the foreground onto a variety of backgrounds. The learning still follows the instance discrimination pretext task, so that the representation is trained to disregard background content and focus on the foreground. We study a variety of saliency estimation methods, and find that most methods lead to improvements for contrastive learning. With this approach (DiLo), significant performance is achieved for self-supervised learning on ImageNet classification, and also for object detection on PASCAL VOC and MSCOCO.Comment: Accepted by AAAI202

    Semantic Counting from Self-Collages

    Full text link
    While recent supervised methods for reference-based object counting continue to improve the performance on benchmark datasets, they have to rely on small datasets due to the cost associated with manually annotating dozens of objects in images. We propose Unsupervised Counter (UnCo), a model that can learn this task without requiring any manual annotations. To this end, we construct "SelfCollages", images with various pasted objects as training samples, that provide a rich learning signal covering arbitrary object types and counts. Our method builds on existing unsupervised representations and segmentation techniques to successfully demonstrate the ability to count objects without manual supervision. Our experiments show that our method not only outperforms simple baselines and generic models such as FasterRCNN, but also matches the performance of supervised counting models in some domains.Comment: 24 pages. Code available at https://github.com/lukasknobel/SelfCollage

    Staging E-Commerce Products for Online Advertising using Retrieval Assisted Image Generation

    Full text link
    Online ads showing e-commerce products typically rely on the product images in a catalog sent to the advertising platform by an e-commerce platform. In the broader ads industry such ads are called dynamic product ads (DPA). It is common for DPA catalogs to be in the scale of millions (corresponding to the scale of products which can be bought from the e-commerce platform). However, not all product images in the catalog may be appealing when directly re-purposed as an ad image, and this may lead to lower click-through rates (CTRs). In particular, products just placed against a solid background may not be as enticing and realistic as a product staged in a natural environment. To address such shortcomings of DPA images at scale, we propose a generative adversarial network (GAN) based approach to generate staged backgrounds for un-staged product images. Generating the entire staged background is a challenging task susceptible to hallucinations. To get around this, we introduce a simpler approach called copy-paste staging using retrieval assisted GANs. In copy paste staging, we first retrieve (from the catalog) staged products similar to the un-staged input product, and then copy-paste the background of the retrieved product in the input image. A GAN based in-painting model is used to fill the holes left after this copy-paste operation. We show the efficacy of our copy-paste staging method via offline metrics, and human evaluation. In addition, we show how our staging approach can enable animations of moving products leading to a video ad from a product image.Comment: Accepted for publication in AdKDD 202
    • …
    corecore