9 research outputs found

    ORBS and the limits of static slicing

    Get PDF
    Observation-based slicing is a recently-introduced, language-independent, slicing technique based on the dependencies observable from program behaviour. Due to the wellknown limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S that is strictly smaller than the corresponding observation based slice is guaranteed to be unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true static minimal slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight unsafe static slices. Finally, we report on the sensitivity of observation-based slicing to test quality

    Tree-oriented vs. line-oriented Observation-Based Slicing

    Get PDF
    Observation-based slicing is a recently-introduced, language-independent slicing technique based on the dependencies observable from program behavior. The original algorithm processed traditional source code at the line-of-text level. A recent variation was developed to slice the tree-based XML representation of executable models. We ported the model slicer to source code using srcML to construct a tree-based representation of traditional source code. We present the results of a comparison of the two slicers using four experiments involving seventeen different programs, including classic benchmarks and larger production systems. The resulting slices had essentially the same size and quite often the same content. Where they differ, the use of tree structure traded an ability to remove unnecessary parts of a statement for the requirement of maintaining aspect of the code structure. Comparing the slicers finds that each has its advantages. For example, when the tree representation facilitates the deletion of large chunks of code, the tree slicer was over eight times faster. In contrast, when slicing C++ code it was over nine times slower because of the multitude of small trees created to support C++ syntax. Given the pros and cons of the two, the results suggest the value of their hybrid combination

    Generalized observational slicing for tree-represented modelling languages

    Get PDF
    Model-driven software engineering raises the abstraction level making complex systems easier to understand than if written in textual code. Nevertheless, large complicated software systems can have large models, motivating the need for slicing techniques that reduce the size of a model. We present a generalization of observation-based slicing that allows the criterion to be defined using a variety of kinds of observable behavior and does not require any complex dependence analysis. We apply our implementation of generalized observational slicing for tree-structured representations to Simulink models. The resulting slice might be the subset of the original model responsible for an observed failure or simply the sub-model semantically related to a classic slicing criterion. Unlike its predecessors, the algorithm is also capable of slicing embedded Stateflow state machines. A study of nine real-world models drawn from four different application domains demonstrates the effectiveness of our approach at dramatically reducing Simulink model sizes for realistic observation scenarios: for 9 out of 20 cases, the resulting model has fewer than 25% of the original model's elements

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement (GI) uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of GI back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. GI has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between GI and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of genetic improvement back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. Genetic improvement has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between genetic improvement and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    A Large-scale Study of Call Graph-based Impact Prediction using Mutation Testing

    Get PDF
    International audienceIn software engineering, impact analysis consists in predicting the software elements (e.g. modules, classes, methods) potentially impacted by a change in the source code. Impact analysis is required to optimize the testing effort. In this paper, we propose a framework to predict error propagation. Based on 10 open-source Java projects and 5 classical mutation operators, we create 17000 mutants and study how the error they introduce propagates. This framework enables us to analyze impact prediction based on four types of call graph. Our results show that the sophistication indeed increases completeness of impact prediction. However, and surprisingly to us, the most basic call graph gives the highest trade-off between precision and recall for impact prediction

    On the use of commit-relevant mutants

    Get PDF
    Applying mutation testing to test subtle program changes, such as program patches or other small-scale code modifications, requires using mutants that capture the delta of the altered behaviours. To address this issue, we introduce the concept of commit-relevant mutants, which are the mutants that interact with the behaviours of the system affected by a particular commit. Therefore, commit-aware mutation testing, is a test assessment metric tailored to a specific commit. By analysing 83 commits from 25 projects involving 2,253,610 mutants in both C and Java, we identify the commit-relevant mutants and explore their relationship with other categories of mutants. Our results show that commit-relevant mutants represent a small subset of all mutants, which differs from the other classes of mutants (subsuming and hard-to-kill), and that the commit-relevant mutation score is weakly correlated with the traditional mutation score (Kendall/Pearson 0.15-0.4). Moreover, commit-aware mutation analysis provides insights about the testing of a commit, which can be more efficient than the classical mutation analysis; in our experiments, by analysing the same number of mutants, commit-aware mutants have better fault-revelation potential (30% higher chances of revealing commit-introducing faults) than traditional mutants. We also illustrate a possible application of commit-aware mutation testing as a metric to evaluate test case prioritisation

    ORBS and the limits of static slicing

    No full text
    Observation-based slicing is a recently-introduced, language-independent slicing technique based on the dependencies observable from program behaviour. Due to the well-known limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S, that is strictly smaller than the corresponding observation based slice is potentially unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true minimal static slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight limitations in static slicers. Finally, we report on the sensitivity of observation-based slicing to test quality
    corecore