173 research outputs found

    Adaptive frame structure and OFDMA resource allocation in mobile multi-hop relay networks

    Get PDF
    The objective of this thesis research is to optimize network throughput and fairness, and enhance bandwidth utilization in wireless mobile multi-hop relay (MMR) networks. To enhance bandwidth utilization, we propose an adaptive OFDMA frame structure which is used by the base station and the non-transparent relay stations. To optimize throughput and fairness, we develop an adaptive OFDMA allocation algorithm by using the proposed adaptive OFDMA frame. The effectiveness of the proposed schemes has been verified by numeric simulations. Providing ubiquitous coverage with wireless metropolitan area networks (WMANs) can be costly, especially in sparsely populated areas. In this scenario, cheaper relay stations (RSs) can be used to provide coverage instead of expensive base stations (BSs). The RS extends the coverage area of traditional BSs. This sort of network is known as a wireless MMR network. This thesis focuses on MMR networks that use orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) as a multiple access scheme and a duplex communication technique (e.g., WiMAX). The use of OFDMA resources (e.g., OFDMA symbols and subcarriers) and how they are shared in current schemes can reduce system capacity and network throughput in certain scenarios. To increase the capacity of the MMR network, we propose a new protocol that uses an adaptive OFDMA frame structure for BSs and RSs. We also propose adaptive OFDMA resource allocation for subscriber stations (SSs) within a BS or RS. We derive the maximum OFDMA resources that RSs can be assigned and synchronize access zones and relay zones between a superior station and its subordinate RSs. This is bounded by three properties defined in this thesis: a data relay property, a maximum balance property, and a relay zone limitation property. Finally, we propose max-min and proportional fairness schemes that use the proposed adaptive frame structure. The proposed scheme is the first approach that incorporates the adaptive technique for wireless MMR networks. We evaluate our scheme using simulations and numerical analysis. Results show that our technique improves resource allocation in wireless MMR networks. Further, in asymmetric distributions of SSs between access zones and relay zones, the proposed OFDMA allocation scheme performs two times better than the non-adaptive allocation scheme in terms of average max-min fairness and 70% better in terms of average throughput.Ph.D.Committee Chair: Dr. John A. Copeland; Committee Member: Dr. George F. Riley; Committee Member: Dr. Henry L. Owen; Committee Member: Dr. Mary Ann Ingram; Committee Member: Dr. Patrick Trayno

    Distributed DTX Alignment with Memory

    Full text link
    This paper addresses the assignment of transmission and sleep time slots between interfering transmitters with the objective of minimal power consumption. In particular, we address the constructive alignment of Discontinuous Transmission (DTX) time slots under link rate constraints. Due to the complexity of the combinatorial optimization problem at hand, we resort to heuristic assignment strategies. We derive four time slot alignment solutions (sequential alignment, random alignment, p-persistent ranking and DTX alignment with memory) and identify trade-offs. One solution, DTX alignment with memory, addresses trade-offs of the other three by maintaining memory of past alignment and channel quality to buffer short term changes in channel quality. All strategies are found to exhibit similar convergence behavior, but different power consumption and retransmission probabilities. DTX alignment with memory is shown to achieve up to 40% savings in power consumption and more than 20% lower retransmission probability than the state of the art.Comment: 13 pages, In 2014 IEEE International Conference on Communications (ICC), Page(s): 3481 - 348

    DOCSIS 3.1 cable modem and upstream channel simulation in MATLAB

    Get PDF
    The cable television (CATV) industry has grown significantly since its inception in the late 1940’s. Originally, a CATV network was comprised of several homes that were connected to community antennae via a network of coaxial cables. The only signal processing done was by an analogue amplifier, and transmission only occurred in one direction (i.e. from the antennae/head-end to the subscribers). However, as CATV grew in popularity, demand for services such as pay-per-view television increased, which lead to supporting transmission in the upstream direction (i.e. from subscriber to the head-end). This greatly increased the signal processing to include frequency diplexers. CATV service providers began to expand the bandwidth of their networks in the late 90’s by switching from analogue to digital technology. In an effort to regulate the manufacturing of new digital equipment and ensure interoperability of products from different manufacturers, several cable service providers formed a non-for-profit consortium to develop a data-over-cable service interface specification (DOCSIS). The consortium, which is named CableLabs, released the first DOCSIS standard in 1997. The DOCSIS standard has been upgraded over the years to keep up with increased consumer demand for large bandwidths and faster transmission speeds, particularly in the upstream direction. The latest version of the DOCSIS standard, DOCSIS 3.1, utilizes orthogonal frequency-division multiple access (OFDMA) technology to provide upstream transmission speeds of up to 1 Gbps. As cable service providers begin the process of upgrading their upstream receivers to comply with the new DOCSIS 3.1 standard, they require a means of testing the various functions that an upstream receiver may employ. It is convenient for service providers to employ cable modem (CM) plus channel emulator to perform these tests in-house during the product development stage. Constructing the emulator in digital technology is an attractive option for testing. This thesis approaches digital emulation by developing a digital model of the CMs and upstream channel in a DOCSIS 3.1 network. The first step in building the emulator is to simulate its operations in MATLAB, specifically upstream transmission over the network. The MATLAB model is capable of simulating transmission from multiple CMs, each of which transmits using a specific “transmission mode.” The three transmission modes described in the DOCSIS 3.1 standard are included in the model. These modes are “traffic mode,” which is used during regular data transmission; “fine ranging mode,” which is used to perform fine timing and power offset corrections; and “probing” mode, which is presumably used for estimating the frequency response of the channel, but also is used to further correct the timing and power offsets. The MATLAB model is also capable of simulating the channel impairments a signal may encounter when traversing the upstream channel. Impairments that are specific to individual CMs include integer and fractional timing offsets, micro-reflections, carrier phase offset (CPO), fractional carrier frequency offset (CFO), and network gain/attenuation. Impairments common to all CMs include carrier hum modulation, AM/FM ingress noise, and additive white Gaussian noise (AWGN). It is the hope that the MATLAB scripts that make up the simulation be translated to Verilog HDL to implement the emulator on a field-programmable gate array (FPGA) in the near future. In the event that an FPGA implementation is pursued, research was conducted into designing efficient fractional delay filters (FDFs), which are essential in the simulation of micro-reflections. After performing an FPGA implementation cost analysis between various FDF designs, it was determined that a Kaiser-windowed sinc function FDF with roll-off parameter β = 3.88 was the most cost-efficient choice, requiring at total of 24 multipliers when implemented using an optimized structure

    Architecture Design of Frequency Domain Processing for Flexible and Re-configurable WiMAX OFDMA Receiver

    Get PDF
    AbstractThis paper proposes hardware architecture of WiMAX OFDMA frequency domain processing system. The system mainly consists of channel estimator, equalizer, and subcarrier de-allocator. The system is optimized for flexible and re-configurable WiMAX OFDMA receiver. The flexibility feature is obtained by employing flexible control unit approach using task FIFO. Using this scheme, the designed system can handle various and complex data structure within OFDMA frame. The propesed architecture has been implemented in 0.13ÎĽm CMOS technology. The implementation result shows that chip area is about 0.45 mm2 and able to work in targeted system clock 54MHz

    Continent-Wide Efficient and Fair Downlink Resource Allocation in LEO Satellite Constellations

    Get PDF
    The integration of Low Earth Orbit (LEO) satellite constellations into 5G and Beyond is essential to achieve efficient global connectivity. As LEO satellites are a global infrastructure with predictable dynamics, a pre-planned fair and load-balanced allocation of the radio resources to provide efficient downlink connectivity over large areas is an achievable goal. In this paper, we propose a distributed and a global optimal algorithm for satellite-to-cell resource allocation with multiple beams. These algorithms aim to achieve a fair allocation of time-frequency resources and beams to the cells based on the number of users in connected mode (i.e., registered). Our analyses focus on evaluating the trade-offs between average per-user throughput, fairness, number of cell handovers, and computational complexity in a downlink scenario with fixed cells, where the number of users is extracted from a population map. Our results show that both algorithms achieve a similar average per-user throughput. However, the global optimal algorithm achieves a fairness index over 0.9 in all cases, which is more than twice that of the distributed algorithm. Furthermore, by correctly setting the handover cost parameter, the number of handovers can be effectively reduced by more than 70% with respect to the case where the handover cost is not considered

    Dynamic Time-domain Duplexing for Self-backhauled Millimeter Wave Cellular Networks

    Full text link
    Millimeter wave (mmW) bands between 30 and 300 GHz have attracted considerable attention for next-generation cellular networks due to vast quantities of available spectrum and the possibility of very high-dimensional antenna ar-rays. However, a key issue in these systems is range: mmW signals are extremely vulnerable to shadowing and poor high-frequency propagation. Multi-hop relaying is therefore a natural technology for such systems to improve cell range and cell edge rates without the addition of wired access points. This paper studies the problem of scheduling for a simple infrastructure cellular relay system where communication between wired base stations and User Equipment follow a hierarchical tree structure through fixed relay nodes. Such a systems builds naturally on existing cellular mmW backhaul by adding mmW in the access links. A key feature of the proposed system is that TDD duplexing selections can be made on a link-by-link basis due to directional isolation from other links. We devise an efficient, greedy algorithm for centralized scheduling that maximizes network utility by jointly optimizing the duplexing schedule and resources allocation for dense, relay-enhanced OFDMA/TDD mmW networks. The proposed algorithm can dynamically adapt to loading, channel conditions and traffic demands. Significant throughput gains and improved resource utilization offered by our algorithm over the static, globally-synchronized TDD patterns are demonstrated through simulations based on empirically-derived channel models at 28 GHz.Comment: IEEE Workshop on Next Generation Backhaul/Fronthaul Networks - BackNets 201

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed
    • …
    corecore