
DOCSIS 3.1 Cable Modem and Upstream

Channel Simulation in MATLAB

A Thesis Submitted

to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Ben Fortosky

Saskatoon, Saskatchewan, Canada

© Copyright Ben Fortosky, December, 2015. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, it is agreed that the Libraries of this University may

make it freely available for inspection. Permission for copying of this thesis in any manner, in

whole or in part, for scholarly purposes may be granted by the professors who supervised this

thesis work or, in their absence, by the Head of the Department of Electrical and Computer

Engineering or the Dean of the College of Graduate Studies and Research at the University of

Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof, for financial

gain without the written permission of the author is strictly prohibited. Proper recognition

shall be given to the author and to the University of Saskatchewan in any scholarly use which

may be made of any material in this thesis.

Request for permission to copy or to make any other use of material in this thesis in

whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i

Acknowledgments

I would like to thank my faculty supervisors, Professor J. Eric Salt, Professor Ha H.

Nguyen, and my industry supervisor, Dr. Brian Berscheid for their encouragement and

patience throughout the duration of the Industry Oriented Master’s (IOM) program. The

courses they taught and the information they provided served as excellent resources through-

out the development of my project.

I would also like to thank Vecima Networks Inc., who provided the funding for my

research in conjunction with the Natural Sciences and Engineering Research Council of

Canada (NSERC). Furthermore, the mentorship provided by Dr. Berscheid during my work

term at Vecima was very helpful, and something for which I am incredibly grateful.

A very special thanks goes to my fellow IOM cohorts, Tung Nguyen, Yayi Xiao, and

Chad Holst. Their ideas and work helped guide my research, and their friendship served as

a constant source of motivation and inspiration over the years.

Finally, I must thank my fiancée, Lee-Anne Gilecki, and my parents, Owen and Deborah

Fortosky, for the constant love and support they have provided me with over the years. I

could not have done it without you.

ii

Abstract

The cable television (CATV) industry has grown significantly since its inception in the

late 1940’s. Originally, a CATV network was comprised of several homes that were connected

to community antennae via a network of coaxial cables. The only signal processing done

was by an analogue amplifier, and transmission only occurred in one direction (i.e. from the

antennae/head-end to the subscribers). However, as CATV grew in popularity, demand for

services such as pay-per-view television increased, which lead to supporting transmission in

the upstream direction (i.e. from subscriber to the head-end). This greatly increased the

signal processing to include frequency diplexers.

CATV service providers began to expand the bandwidth of their networks in the late

90’s by switching from analogue to digital technology. In an effort to regulate the man-

ufacturing of new digital equipment and ensure interoperability of products from different

manufacturers, several cable service providers formed a non-for-profit consortium to develop

a data-over-cable service interface specification (DOCSIS). The consortium, which is named

CableLabs, released the first DOCSIS standard in 1997.

The DOCSIS standard has been upgraded over the years to keep up with increased

consumer demand for large bandwidths and faster transmission speeds, particularly in the

upstream direction. The latest version of the DOCSIS standard, DOCSIS 3.1, utilizes orthog-

onal frequency-division multiple access (OFDMA) technology to provide upstream transmis-

sion speeds of up to 1 Gbps. As cable service providers begin the process of upgrading their

upstream receivers to comply with the new DOCSIS 3.1 standard, they require a means

of testing the various functions that an upstream receiver may employ. It is convenient

for service providers to employ cable modem (CM) plus channel emulator to perform these

tests in-house during the product development stage. Constructing the emulator in digital

technology is an attractive option for testing.

This thesis approaches digital emulation by developing a digital model of the CMs and

upstream channel in a DOCSIS 3.1 network. The first step in building the emulator is to

simulate its operations in MATLAB, specifically upstream transmission over the network.

iii

The MATLAB model is capable of simulating transmission from multiple CMs, each of which

transmits using a specific “transmission mode.” The three transmission modes described in

the DOCSIS 3.1 standard are included in the model. These modes are “traffic mode,” which

is used during regular data transmission; “fine ranging mode,” which is used to perform

fine timing and power offset corrections; and “probing” mode, which is presumably used

for estimating the frequency response of the channel, but also is used to further correct the

timing and power offsets.

The MATLAB model is also capable of simulating the channel impairments a signal

may encounter when traversing the upstream channel. Impairments that are specific to in-

dividual CMs include integer and fractional timing offsets, micro-reflections, carrier phase

offset (CPO), fractional carrier frequency offset (CFO), and network gain/attenuation. Im-

pairments common to all CMs include carrier hum modulation, AM/FM ingress noise, and

additive white Gaussian noise (AWGN).

It is the hope that the MATLAB scripts that make up the simulation be translated to

Verilog HDL to implement the emulator on a field-programmable gate array (FPGA) in the

near future. In the event that an FPGA implementation is pursued, research was conducted

into designing efficient fractional delay filters (FDFs), which are essential in the simulation of

micro-reflections. After performing an FPGA implementation cost analysis between various

FDF designs, it was determined that a Kaiser-windowed sinc function FDF with roll-off

parameter β = 3.88 was the most cost-efficient choice, requiring at total of 24 multipliers

and 32,562 bits of memory when implemented using an optimized structure.

iv

Table of Contents

Permission to Use i

Acknowledgments ii

Abstract iii

Table of Contents v

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1

1.1 Brief History of Cable Television in North America 1

1.2 Legacy DOCSIS . 3

1.3 DOCSIS 3.1 . 4

1.4 Problem Statement . 7

1.5 Thesis Outline . 9

2 Background 10

2.1 CM Operations . 11

2.1.1 General OFDMA Frame Structure Parameters 11

2.1.2 Traffic Mode . 13

2.1.3 Ranging Mode . 14

2.1.3.1 Fine Ranging . 15

v

2.1.3.2 Probing . 17

2.1.4 Pre-Equalization . 18

2.1.5 Inverse Fast Fourier Transform . 19

2.1.6 Cyclic Prefix, Roll-off Period, and Windowing 20

2.2 Channel Modelling . 21

2.2.1 Methodology . 21

2.2.2 CM-Specific Impairments . 22

2.2.2.1 Timing Offset . 22

2.2.2.2 Micro-reflections . 28

2.2.2.3 Carrier Phase Offset and Carrier Frequency Offset 32

2.2.2.4 Network Gain . 33

2.2.3 Common Channel Impairments . 34

2.2.3.1 Carrier Hum Modulation . 35

2.2.3.2 Ingress Noise . 36

2.2.3.3 Additive White Gaussian Noise 38

3 MATLAB Model 40

3.1 Overview . 40

3.1.1 Program Flow . 40

3.1.2 Variable Structuring . 41

3.2 Initial Setup . 43

3.2.1 Frame Structure Variables . 43

vi

3.2.2 Channel Variables . 43

3.3 Offset Generation . 44

3.4 Transmitter . 44

3.4.1 Traffic Mode . 46

3.4.2 Fine Ranging Mode . 47

3.4.3 Probing Mode . 50

3.5 Channel . 50

3.5.1 Integer Timing Offset . 52

3.5.2 Micro-reflections . 53

3.5.3 Carrier Phase and Frequency Offsets and Network Gain 56

3.5.4 Carrier Hum Modulation . 57

3.5.5 Ingress Noise . 57

3.5.6 Additive White Gaussian Noise . 59

3.6 Verification . 60

3.6.1 Transmitter Verification . 60

3.6.2 Channel Verification . 61

4 Fractional Delay Filter Design 66

4.1 General Fractional Delay Filter Theory . 66

4.2 Design Methods . 69

4.2.1 Windowing Method . 69

4.2.2 Maximally-Flat Method (Lagrange Interpolation) 71

vii

4.3 Comparison Metric . 72

4.4 Single-Sampling-Rate Structures . 74

4.4.1 Multirate Theory . 75

4.4.2 Polyphase Decomposition . 77

4.4.3 Interpolating with Halfband Filters 80

4.4.4 Polyphase FDF Structure and Downsampling 82

4.5 Filter Design Process . 85

4.5.1 Halfband Filter Design . 86

4.5.2 Fractional Delay Filter Design . 86

4.6 Performance Evaluation and Cost Analysis 87

4.7 Results . 88

5 Conclusion and Future Work 98

5.1 Contributions and Results . 98

5.2 Future Work . 99

Appendix A MATLAB Variable Descriptions 101

Appendix B Upsample by L = 4 Single-Sampling-Rate Structure Example 110

References 114

viii

List of Tables

1.1 Evolution of DOCSIS in the Upstream . 5

2.1 DOCSIS 3.1 Micro-reflection Categories [12] 30

2.2 DOCSIS 3.1 CNR Values [12] . 39

3.1 Properties of Ingress Noise Types Depicted in Figure 3.9 64

4.1 Main Path Filter Designs: Performance and Cost Analysis 96

4.2 Secondary Path Filter Designs: Performance and Cost Analysis 97

A.1 General OFDMA Frame Setup Variables . 102

A.2 Fine Ranging Variables . 103

A.3 Probing Frame Variables . 104

A.4 Offset and Offset Correction Variables . 105

A.5 Channel Setup Variables (1/3) . 106

A.6 Channel Setup Variables (2/3) . 107

A.7 Channel Setup Variables (3/3) . 108

A.8 Output and Debug Variables . 109

ix

List of Figures

1.1 DOCSIS Network . 3

1.2 Transmitter and Channel System Block Diagram 8

2.1 General OFDMA Frame Structure with Minislots [12] © Cable Television

Laboratories, Inc. 2014. Used with permission. 12

2.2 Pilot Patterns 1-4, 2k Mode [12] © Cable Television Laboratories, Inc. 2014.

Used with permission. 14

2.3 Ranging Stages of a DOCSIS 3.1 System [12] © Cable Television Laboratories,

Inc. 2014. Used with permission. 15

2.4 Fine Ranging OFDMA Frame Structure [12] © Cable Television Laboratories,

Inc. 2014. Used with permission. 16

2.5 Fine Ranging OFDMA Symbol Structure [12] © Cable Television Laborato-

ries, Inc. 2014. Used with permission. 17

2.6 DOCSIS 3.1 Probing Frame Structure Example [15] © Cable Television Lab-

oratories, Inc. 2014. Used with permission. 18

2.7 Sample and Hold DAC Output vs. Reconstructed Signal 24

2.8 Timing Offset of a Received OFDMA Frame 26

2.9 Example of Micro-reflections in an HFC Network 29

2.10 Trade-off Between Simulating Micro-reflections Using Fractional Delay Filter

vs. Pre-Equalization Coefficients . 32

3.1 Program Flow Diagram . 42

3.2 Transmitter Function Flow Diagram . 45

x

3.3 Probing Sub-Function Flow Diagram . 49

3.4 Channel Function Flow Diagram . 51

3.5 Distorted Filter Output Caused by Using Frames of a Finite Length to Sim-

ulate Micro-reflections . 55

3.6 60 Hz Carrier Hum Waveform, Fs = 102.4 MHz 58

3.7 Fractional Timing Offset Verification: Pre-Equalization Coefficient Simulation

Method vs. Fractional Delay Filter Simulation Method, ∆ = 0.5 samples . . 62

3.8 Micro-Reflection Verification: Pre-equalization Coefficient Simulation Method

vs. Fractional Delay Filter Simulation Method 63

3.9 Ingress Noise Power Spectral Density Example 65

4.1 Ideal FDF Impulse Response . 68

4.2 Multirate System . 75

4.3 Upsampled Spectrum . 76

4.4 Downsampling . 76

4.5 Inefficient (a) vs. Efficient (b) Structures for Performing Interpolation 78

4.6 Inefficient (a) vs. Efficient (b) Structures for Inducing a Fractional Delay and

Performing Decimation . 79

4.7 Single-Sampling-Rate Structure . 80

4.8 Multirate Halfband Upsampler . 81

4.9 Single-Sampling-Rate Halfband Upsampler 82

4.10 Connection Sequences Required to Obtain Streams a) α0[n] and b) α−(L−1)[n]

at the Structure Output . 85

4.11 Single-Sampling-Rate Structure with Delay and Switching Logic 85

xi

4.12 Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length, No

Upsampling . 90

4.13 Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 2 . 91

4.14 Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 4 . 92

4.15 Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

No Upsampling . 93

4.16 Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 2 . 94

4.17 Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 4 . 95

B.1 Single-Sampling-Rate FIR Halfband Cascade, L = 4 111

xii

List of Abbreviations

AWGN - Additive White Gaussian Noise

BPSK - Binary Phase-Shift Keying

CATV - Community Antenna Television, also Cable Television

CFO - Carrier Frequency Offset

CM - Cable Modem

CMTS - Cable Modem Termination System

CNR - Carrier to Noise Ratio

CPO - Carrier Phase Offset

dB - DeciBels

dBc - DeciBels with respect to Carrier

DFT - Discrete Fourier Transform

DOCSIS - Data Over Cable Service Interface Specification

DSL - Digital Subscriber Line

FDF - Fractional Delay Filter

FDMA - Frequency Division Multiple Access

FEC - Forward Error Correction

FFT - Fast Fourier Transform

FIR - Finite Impulse Response

FPGA - Field Programmable Gate Array

IFFT - Inverse Fast Fourier Transform

ICI - Inter-Carrier Interference

IIR - Infinite Impulse Response

IPv6 - Internet Protocol version 6

ISI - Inter-Symbol Interference

LDPC - Low Density Parity Check

LFSR - Linear Feedback Shift-Register

LUT - Look-Up Table

MAC - Media Access Control

xiii

MATLAB - MATrix LABoratory

MSE - Mean Squared Error

OFDM - Orthogonal Frequency Division Multiplexing

OFDMA - Orthogonal Frequency Division Multiple Access

PAPR - Peak to Average Power Ratio

QAM - Quadrature Amplitude Modulation

QoS - Quality of Service

QPSK - Quadrature Phase-Shift Keying

RAM - Random Access Memory

RC - Raised Cosine

RF - Radio Frequency

S-CDMA - Synchronous Code Division Multiple Access

SNR - Signal to Noise Ratio

TDMA - Time Division Multiple Access

xiv

1. Introduction

1.1 Brief History of Cable Television in North America

The origins of cable television in North America date back to the late 1940’s in the rural

United States, which was a time when many rural communities had poor antennae reception

due to geographic factors. To remedy this, innovators such as L. E. “Ed” Parsons of Astoria,

Oregon [1] and John Walson of Mahoney City, Pennsylvania [2] began independently creating

community antenna/access television (CATV) systems. An antenna would be placed on an

elevated surface in the community in order to capture television signals broadcast from

nearby major urban centres. Coaxial cables were strung from the community antennae to

the households in the community, with amplifiers placed appropriately along the path to

compensate for the attenuation of the cable. This technology continued to spread across

rural America until the late 1960’s, by which point the market had reached saturation [3].

Several technological innovations introduced over the next decade would cause CATV to

experience rapid growth, allowing it to expand beyond its traditional rural market. One such

innovation was the addition of an upstream return path to allow two-way communication over

a cable network. Arpanet founder and RAND Corporation analyst Paul Baran contributed

significantly to development of the concept in the late 1960’s [4]. Although Baran initially

considered the technology for military defensive purposes [4], as the civilian applications

become more apparent companies such RAND, MITRE, Coaxial Scientific, and Theta-Com

SRS began developing early prototypes of two-way communication systems for consumers in

urban centres [5]. Ultimately, this research would result in some of the first cable modems.

Summarized by E. K. Smith in 1975 [5], four main categories of services were explored

1

during the upstream prototyping phase: “narrow-band subscriber response services (e.g.

opinion polling, sensor monitoring, pay-TV [ordering]); shared two-way channels (e.g. ...

remote medical diagnosis, ...); subscriber-initiated services (e.g. ... reservation and banking

services, catalogue shopping); and point-to-point services (e.g. high-speed data-exchange,

teleconferencing, and fascimile).” The majority of these services, however, would not be

offered until the introduction of digital cable years later. The primary reason for this was

content providers such as Home Box-Office (HBO) had already discovered high demand for

pay-television [6]. Thus, the focus of most CATV service providers and manufacturers shifted

towards developing effective pay-television systems.

Focusing on pay-television would ultimately pay off thanks to the introduction of satellite

technology. Following the launch of SATCOM I in 1975, many television stations began

making the transition from terrestrial to satellite broadcasting [6]. This resulted in a plethora

of additional channels being made available to subscribers, as well as an expansion of the

broadcast frequency spectrum in order to accommodate them. With additional channels and

pay-television services now accessible to the general populous, cable became much more than

a means of improving signal quality. It evolved to a highly desired source of entertainment.

As a result, cable television experienced a surge in popularity, allowing it to break through

into the previously untapped large urban-centre market [1].

The next major change for the cable industry would occur during the late 1980’s and

early 1990’s with the advent of the Internet. As customer demand for faster, higher quality

services arose, the industry began transitioning from analogue to digital signal distribution.

An integral part of this transition involved subdividing their existing distribution systems

in order to implement hybrid-fibre coaxial (HFC) networks. The HFC networks allowed for

faster and more efficient data transmission amongst multiple users, which rivalled that of

digital subscriber line (DSL) technologies offered by many telephone companies [7]. Knowing

this, many cable companies began competing directly with telephone companies by upgrading

their cable modems to provide both high-speed data and voice services in addition to the

traditional television and pay-per-view services.

Unfortunately, at the time, there were no standards in place to govern the manufacturing

2

of cable equipment. As a result, CATV service providers purchased proprietary equipment

from a single manufacturer. To ensure fair competition, the service providers collaborated to

form CableLabs, a not-for-profit consortium whose purpose was to generate open standards

that ensured interoperability among different manufacturers of the same equipment. The

first standard developed by CableLabs was the data-over-cable service interface specification,

DOCSIS.

1.2 Legacy DOCSIS

CableLabs released the original North American data-over-cable standard, DOCSIS 1.0,

in 1997. In this first version of the standard, a DOCSIS network was defined as multiple

cable modems (CMs) connected over a hybrid fibre-coaxial (HFC) network to a cable modem

termination system (CMTS) [8], as shown in Figure 1.1. When transmitting upstream

(direction from the subscriber to the service provider), the CMs are viewed as transmitters,

and the CMTS as the receiver. The opposite is true when transmitting downstream (direction

from the service provider to subscriber).

Although the network structure itself has remained relatively unchanged over the years,

the DOCSIS standard has continued to grow and adapt to rising user demands for larger

bandwidth and faster transmission speeds. The demand has been particularly high in the

CMTS

CM CM CM

CM CM CM

CM CM CM

CM CM CM

Optical
Node

Bi-Directional
Amplifier

Coaxial Cable
Network

Fiber-Optic
Cable

CMTS Optical
Node

Bi-Directional
Amplifier

Coaxial Cable Network

Fiber-Optic
Cable

Subscriber / CM

Splitter

Figure 1.1: DOCSIS Network

3

upstream direction, which is the direction from the subscriber to the network. This has

resulted in three major upgrades to the DOSCIS standard. These upgrades are referred

to as version 2.0, released December 31, 2001; version 3.0, released August 4, 2006 and

3.1, released October 29, 2013. It should be noted that DOCSIS 1.1 was released prior to

DOCSIS 2.0; however, the changes made between DOCSIS 1.0 and DOCSIS 1.1 were focused

primarily on quality of service (QoS) standardization. As such, DOCSIS 1.0 and DOCSIS 1.1

are now often collectively referred to as DOCSIS 1.x. Significant upgrades between DOCSIS

1.x and 2.0 included the addition of a synchronous code-division multiple access (S-CDMA)

format, as well as an increase in the maximum upstream quadrature amplitude modulation

(QAM) constellation size from 16-QAM to 64-QAM (128-QAM using S-CDMA with trellis-

coded modulation (TCM) encoding). DOCSIS 3.0 expanded upon this further by adding

channel bonding, as well as support for Internet protocol version 6 (IPv6). A comparison

of several aspects of legacy DOCSIS systems, including their maximum data rates, can be

found in Table 1.1.

1.3 DOCSIS 3.1

As evident in Table 1.1, many significant changes have been introduced in the latest

version of the standard, DOCSIS 3.1. The bandwidths in both the upstream and downstream

directions have increased considerably. The downstream bandwidth could span from 54 MHz

to 1.794 GHz. The upstream could span from from 5 MHz to 204 MHz and beyond, which

is over six times the original 30 MHz limit used in the 1970’s [5]. Different channels in

both DOCSIS 3.0 and 3.1 can be bonded into a single service flow. Perhaps the most

important addition to DOCSIS 3.1 is orthogonal frequency-division multiplexing (OFDM)

in the downstream, and orthogonal frequency division multiple access (OFDMA) in the

upstream.

In an OFDM system, the available frequency spectrum is subdivided into multiple orthog-

onal subcarriers. The input data stream is converted from serial to parallel and distributed

amongst the subcarriers. Data from each active subcarrier is then mapped to a QAM con-

stellation. Following mapping, the modulation is accomplished by taking an inverse fast

4

Table 1.1: Evolution of DOCSIS in the Upstream

Channel Configuration
DOCSIS Version [8] [9] [10] [11] [12]

1.x 2.0 3.0 3.1

Lower Operating Range

(MHz)

5 5 5 5

Upper Operating Range

(MHz)

42 42 42 (85) 42 (65, 85,

117, 204)

Max QAM Constellation

Size

16 64 (128 w/

S-CDMA

TCM)

64 (128 w/

S-CDMA

TCM)

4096

Multiplexing Technique FDMA,

TDMA

FDMA,

TDMA,

S-CDMA

FDMA,

TDMA,

S-CDMA

OFDMA,

TDMA,

S-CDMA

Max Raw Data Rate 10.24 Mbps

(9) Mbps

30.72 Mbps

(27) Mbps

n × 30.72

Mbps (n ×

27 Mbps)i

1 Gbps

i Here, n refers to the number of bonded channels in a DOCSIS 3.0 system.

Fourier transform (IFFT) of the complex scalers for the subcarriers in the bandwidth. The

IFFT output is then lengthened by prefixing copies of the samples at the end of the IFFT.

Because the prefix is a copy of the IFFT, it is referred to as a “cyclic prefix”. This cyclic

prefix can effectively eliminate inter-symbol interference (ISI), provided it is longer than the

channel delay spread [13].

OFDMA is used for upstream transmission in DOCSIS 3.1. The main difference between

the OFDM and OFDMA is that OFDM has a single transmitter while OFDMA allows several

devices to transmit simultaneously. The latter allows different subcarriers to be allocated to

different users on a frame-by-frame basis. OFDMA has several significant advantages over

time-division multiple access (TDMA) and code-division multiple access (CDMA), which are

legacy DOCSIS transmission formats. First and foremost, it is scalable in bandwidth. As

5

such, the IFFT size can be matched to the channel bandwidth while fixing the subcarrier

spacing. Specifically, an upstream DOCSIS 3.1 OFDMA system has a maximum bandwidth

of 95 MHz and utilizes an IFFT size of either 2048 or 4096, with respective subcarriers

spacing of 50 kHz and 25 kHz. Other upstream transmission methods such as TDMA and

CDMA are not easily scalable to such large bandwidths [13].

The flexible power distribution in OFDMA is also an asset. Unlike TDMA, which dis-

tributes power evenly across the entire bandwidth, the spectrum of OFDMA can be shaped

by scaling the power in the subcarriers. This is particularly useful when providing service to

the more “noisy” users, which are typically located far away, as their assigned subcarriers

can be given more power to elevate the signal-to-noise ratio (SNR) and improve the signal

quality [14]. Additionally, if ingress interference is present and dominates a particular sub-

carrier, then that subcarrier can be turned off or excluded. This is not possible with TDMA

or CDMA [13].

While the advantages of OFDMA are significant, the technique itself is not without

drawbacks. Since each sample of the IFFT output is the sum of N independent variables, the

resulting time domain sequence has an asymptotically Gaussian amplitude distribution. This

means that there will be a high peak-to-average power ratio (PAPR) [14]. Also, depending

on the subcarrier spacing, OFDMA can be very sensitive to downconversion frequency offsets

and phase noise, making frequency synchronization critical [13].

Ultimately, through the use of OFDMA, the goal of DOCSIS 3.1 in the upstream is to

increase data speeds up to 1 Gbps. The standard has also implemented the use of low-

density parity-check (LDPC) encoding in conjunction with OFDMA, which has allowed the

maximum upstream QAM constellation sizes to be increased to 4096. Theoretically, this will

result in the ability to transmit up to 50% more data over existing HFC networks, provided

the appropriate channel conditions are met.

6

1.4 Problem Statement

Cable companies are already positioning themselves to adopt DOCSIS 3.1 technology. In

order to ensure the new DOCSIS 3.1 equipment meets specifications, they must be able to

simulate data transmission over a DOCSIS 3.1 network. The simulation of data transmission

in the upstream direction can be achieved by modelling both a cable modem (CM) and an

upstream cable channel in a digital environment. The main objective of this research is the

design of a MATLAB model of the upstream path in the network for the purpose of testing

a DOCSIS 3.1 OFDMA receiver. The transmission model must include the generation of

DOCSIS 3.1 OFDMA frames, as well as the possible channel impairments that a transmitted

signal may encounter when travelling upstream over an HFC network.

In order to model a DOCSIS 3.1 CM, its internal functionality must first be understood.

A DOCSIS 3.1 CM is capable of converting data from an external device into a transmit-

table OFDMA frame. Although the format of the data may vary depending on the type of

external device connected, it is assumed for the purposes of this research that the data to

be transmitted is presented as a serial stream of binary numbers. With this assumption,

the CM’s functionality begins at the input to the serial to parallel converter, as depicted

in Figure 1.2. Following conversion from serial to parallel, the data must be allocated to

specific subcarriers, mapped to an appropriate QAM constellation, pre-equalized, and then

modulated using an IFFT. The CM must then add both a cyclic prefix and a roll-off period

to the time-domain signal and shape the combined sequence using a Tukey raised-cosine

(RC) window. Finally, the CM sends the windowed time-domain signal up the channel.

There is no need for upconversion in a digital model as the radio-frequency (RF) signal and

all RF processing can be done in baseband. Baseband equivalent operation will be explored

in more detail in Chapter 2.

As the signal travels over an upstream cable channel, it can encounter impairments that

can be categorized as one of two types. The first category includes impairments that can

be considered unique to each individual CM, such as fractional and integer timing offsets,

micro-reflections, carrier phase offset (CPO), carrier frequency offset (CFO), and network

gain/attenuation. The second category includes common impairments that affect the re-

7

IFFT

Se
ria

l t
o

Pa
ra

lle
l Add CP &

RP,
Windowing,
Parallel to

Serial
Conversion Pr

e-
Eq

ua
liz

er

Network
Gain /

Attenuation

AWGN Ingress
Noise

CMTS Carrier Hum
Modulation

CM-Specific Upstream Channel Impairments

Carrier
Frequency

Offset

Carrier
Phase
Offset

Micro-
reflection

Integer Offset

Integer
Timing
Offset

z-a

HFD(z)z-b

Micro-
reflection

Filter

Micro-
reflection

Attenuation

z-(N -1)/2FD

Filter Compensation
DelayMain Path

Secondary Path

Micro-reflections &
Fractional Timing

Offset

Integer
Timing
Offset

Build
OFDMA
Frame,

QAM Map
Data to

Individual
Subcarriers

X[NFFT-1]

X[1]

X[0]

x[NFFT-1]

x[1]

x[0]

Common Upstream Channel Impairments

Individual CMs

Combine
Transmitted

Signals of All
CMs

Binary
Input
Data

t
α1

α2

τ1 τ2

1

θ+Δ z-θ

Figure 1.2: Transmitter and Channel System Block Diagram

ceived signal as a whole, such as carrier hum modulation, AM and FM ingress noise, and

thermal noise, or additive white Gaussian noise (AWGN). All of the aforementioned impair-

ments are depicted in Figure 1.2.

In the future, it may be desirable to migrate the MATLAB simulation of the CM and

8

upstream channel to a field-programmable gate array (FPGA). The FPGA implementation

becomes a low-cost alternative to a commercial RF emulator. A secondary objective of this

research is to provide a preliminary cost analysis in terms of the number of multipliers and

the bits of memory required to implement some of the main components of the MATLAB

model on an FPGA.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 discusses the theoretical

aspects of upstream transmission over a DOCSIS 3.1 network. The first half of the chapter

describes the functionality of DOCSIS 3.1 CMs and the methods that they employ to generate

OFDMA frames. The chapter then segues into a discussion surrounding the theory of an

upstream cable channel and how it can be modelled in digital baseband. As the chapter

progresses, a discrete-time representation of the channel and its impairments is developed.

The final product of the chapter is a discrete-time equation that models all of the CM-specific

and common channel impairments listed in the problem statement.

Having established a firm theoretical background, Chapter 3 moves on to describe the

implementation and verification techniques that were used to simulate the aforementioned

DOCSIS 3.1 CM functionality and upstream channel impairments in MATLAB. Particular

attention is given to micro-reflections, which are simulated using fractional delay filters.

Since it may be desirable to implement the MATLAB model on an FPGA in the future,

Chapter 4 explores several methods for designing cost-effective fractional delay filters. Three

filter designs are ultimately selected and evaluated based on their passband mean squared

error (MSE) performance, as well as their cost in terms of multipliers and bits of memory.

The thesis concludes with Chapter 5, which summarizes the contributions made by this

research.

9

2. Background

The purpose of this chapter is to provide the necessary background required to understand

the various cable modem (CM) functions and channel impairments included in the MATLAB

model. The chapter is separated into two parts. The first part covers the operations of

the CM. It begins with a discussion of the CM’s transmission modes and their respective

orthogonal frequency-division multiple access (OFDMA) frame structures. Pre-equalization

is then explored, and is followed by a discussion of the unique equations used by the data-

over-cable service interface specification (DOCSIS) 3.1 standard to perform an inverse fast

Fourier transform (IFFT). Finally, the cyclic-prefix, roll-off, and windowing methods used

by the standard are examined.

The second portion of the chapter explores the theory behind the two categories of channel

impairments described in the problem statement. It begins with a discussion concerning

some critical assumptions made about the channel model, followed by the definition of a

complex baseband equivalent signal. Next, CM-specific impairments are discussed, including

integer and fractional timing offsets, micro-reflections, fractional carrier frequency offset and

network gain/attenuation. Lastly, common impairments are discussed, including carrier hum

modulation, AM/FM ingress noise, and additive white Gaussian noise (AWGN). The end

result is an equation that combines both categories of impairments, thus demonstrating how

the channel itself can be digitally modelled in baseband.

10

2.1 CM Operations

2.1.1 General OFDMA Frame Structure Parameters

In order for a CM to meet the DOCSIS 3.1 transmission criteria, it must be able to

transform and restructure incoming data so that it conforms to one of the many OFDMA

frame structures outlined in the DOCSIS 3.1 standard. The frame structures themselves are

determined by the transmission mode of the CM. There are two main transmission modes:

“traffic’ mode,” in which the CM transmits user data, and “ranging’ mode,” where the CM

transmits frames specifically designed to obtain information about the channel. Ranging

can be further be subdivided into three separate modes: initial ranging, fine ranging, and

probing, each of which is used to perform a different channel estimation task.

The media access controller (MAC), whose function is to control the physical layer,

controls switching between these modes. The switching is based on channel information

that the cable modem termination system (CMTS) obtains periodically via ranging. This

model, however, is designed to give the user full control over both the transmission modes

and frame structures outlined in the standard. As such, the intricacies of the MAC are

beyond the scope of this research.

Before delving into the specifics of OFDMA frame structures, it is important to establish

the definition of an OFDMA frame. The DOCSIS 3.1 standard defines an OFDMA frame

as a contiguous sequence of OFDMA symbols aligned in the time domain, as depicted in

Figure 2.1. The number of OFDMA symbols in a frame is variable and denoted as K.

Each OFDMA symbol is defined as a sequence of quadrature amplitude modulation (QAM)-

mapped symbols carried by NFFT subcarriers, NFFT being the size of the IFFT.

Thus, the first parameter that is specified when setting up an OFDMA frame structure

is the IFFT size. DOCSIS 3.1 allows an IFFT to modulate either 2048 subcarriers with 50

kHz spacing or 4096 subcarriers with 25 kHz spacing, which are referred to in this model

as “2k” and “4k” modes, respectively. Following the IFFT size selection, a specific number

of subcarriers are assigned to each CM. Any subcarriers that are not assigned to a CM are

labelled as either unused or excluded, the later of which require that no data be transmitted

11

CM-SP-PHYv3.1-I04-141218 Data-Over-Cable Service Interface Specifications

54 CableLabs� 12/18/14

7.4.2 Signal Processing Requirements

Upstream transmission uses OFDMA frames. Each OFDMA frame is comprised of a configurable number of
OFDM symbols, K. Several transmitters may share the same OFDMA frame by transmitting data and pilots on
allocated sub-carriers of the OFDMA frame. There are several pilot patterns as described in Section 7.4.17.

The structure of an OFDMA frame is depicted in Figure 7-1. The upstream spectrum is divided into groups of sub-
carriers called minislots. Minislots have dedicated sub-carriers, all with the same modulation order ("bit loading"). A
CM is allocated to transmit one or more minislots in a Transmission Burst. The modulation order of a minislot, as
well as the pilot pattern to use may change between different transmission bursts and are determined by a
transmission profile.

Figure 7-1 - OFDMA Frame Structure

Serial data signals received from the PHY-MAC Convergence Layer are received and processed by the PHY as
illustrated in Figure 7-2. This process yields a transmission burst of a single or multiple OFDMA minislots, as
allocated by the PHY-MAC Convergence Layer. Each minislot is comprised of pilots, complementary pilots, and
data subcarriers, as described in Section 8.2.3. Subcarriers that are not used for data or pilots are set to zero.

Data from
PHY MAC
Interface

LDPC
Encoder

Symbol
Mapper

Interleaver
/ OFDMA

Framer Pre-EQ IFFT CP and
Window

Bit
Loading

Pilot
Pattern

FEC
Padding Scrambler

Probe
Generator

Figure 7-2 - Upstream transmitter block diagram

This section briefly describes the process and provides links to the specific requirements for each process described
in this specification.

minislot 0
Q

subcarriers

K symbols

minislot 1

minislot m-1

Minislot m

minislot m+k-1

 k – minislot
TX Burst

 m- minislot
TX Burst

minislot N-1

minislot m+k-1 single minislot
TX Burst

Figure 2.1: General OFDMA Frame Structure with Minislots [12]

© Cable Television Laboratories, Inc. 2014. Used with permission.

over them. The first and last 74 subcarriers in 2k mode, as well as the first and last 148

subcarriers in 4k mode, are always excluded in order to provide guard bands at the beginning

and end of the spectrum.

Subcarriers that are assigned to a specific CM are grouped into minislots. A minislot

is the data carried by Q contiguous subcarriers distributed across K OFDMA symbols in

a single frame. The value of Q is either 8 subcarriers in 2k mode or 16 subcarriers in 4k

mode. The value of K can range from 6 to 36 OFDMA symbols in 2k mode, or from 6 to

18 OFDMA symbols in 4k mode. Refer to Figure 2.1 for a visual representation.

Each OFDMA symbol can contain a mixture of QAM-mapped data symbols, pilot sym-

bols and/or complementary pilots depending on the transmission mode selected. It should

be noted that for the purposes of this model, only binary phase-shift keying (BPSK) and

square QAM constellations up to 4096-QAM are considered (BPSK being used only for pilots

12

and complementary pilots).

DOCSIS 3.1 pilot symbols are generated using a linear feedback shift-register (LFSR)

with generator polynomial X12 + X9 + X8 + X5 + 1 and a seed value of 12’d3071. This

sequence is periodic with a period of 212 − 1. These symbols are then mapped using BPSK.

Complementary pilots are slightly different than pilots. They are modulated by data

using a reduced order, specifically 2P -4 QAM where P is the constellation order of the data

carrying subcarriers. For example, a complementary pilot symbol for a minislot utilizing

4096-QAM would be mapped using 256-QAM. Complementary pilots for any QAM constel-

lation with an order less than or equal to 16-QAM uses BPSK.

Forward error correction (FEC) encoding is beyond the scope of this research. However, it

should be noted that low-density parity check (LDPC) FEC encoding is typically performed

on all data symbols in a frame following the assembly of its structure (except in the case of

probing).

With a general understanding of the parameters used to generate OFDMA frames now

established, the next few subsections will proceed to discuss specific frame structures used

in the CM’s transmission modes.

2.1.2 Traffic Mode

Once the system has been initialized, traffic mode is used to transfer data from the CM to

the CMTS. The CMTS controls the upstream transmission by allocating a specific number

of minislots to each transmitting CM. The data, which is QAM-mapped to data-carrying

subcarriers, the pilots and the complementary pilots are distributed throughout the minislot

(i.e. throughout the matrix of Q subcarriers by K OFDMA symbols) according to one of

14 different pilot pattern mappings. The pilot pattern is specified by the CMTS as part of

the grant. Patterns 1-7 apply to 2k mode, while patterns 8-14 are used in 4k mode. The

patterns also vary depending on whether the minislot is an “edge” or “body” minislot. A

minislot is defined by the DOCSIS 3.1 standard as an edge minislot if it is:

(a) The first minislot in a transmission burst,

13

Physical Layer Specification CM-SP-PHYv3.1-I04-141218

12/18/14 CableLabs� 111

Two additional pilot patterns are specified for subslots (see Section 7.4.17.4 and Section 7.4.17.5); these are
required for both the CM and the CMTS.

The following sections describe the seven pilot patterns for each minislot size, and the pilot patterns for subslots.

7.4.17.1 Pilot Patterns for 8-Subcarrier Minislots

Figure 7-36 and Figure 7-37 define the pilot patterns for edge and body minislots with 8 subcarriers.

The CM MUST support pilot patterns 1-7.

The CMTS MUST support pilot patterns 1-4.

The CMTS SHOULD support pilot patterns 5-7.

The CMTS MUST use either pilots pattern 1-4 or pilot patterns 5-7 on the same OFDMA channel.

The CMTS MUST NOT use a mixture of pilot patterns 1-4 and 5-7 on the same OFDMA channel.

In each figure, the horizontal axis represents OFDMA symbols, and the vertical axis represents the subcarriers. Each
square in a figure represents a subcarrier at a specific symbol time. Pilots are designated by "P" and complementary
pilots by "CP". All other subcarriers carry data with the modulation order of the minislot.

The figures show patterns for K between 6 and 16. For K>16 the complementary pilots are always located in the 14th
and 16th symbols, all symbols from the 17th symbol to the end of the frame carry data only. Pilot locations are the
same for any K.

Pattern 1 Pattern 2 Pattern 3 Pattern 4

P P CPCP P P CPCP

P

PP

P P CPCP

PP

P P CPCP

PP

P P

P P

P

P

P

P

P

P P

P

P

P

P

P

P P CPCP

P P CP CP

P P CPCP

P P CP CP

P P

P

P P CPCP

PP

P P

P P

P P CPCP CP

P P CPCP

PP

P

P

P

P

P

P P

P

P

P

P

P

CP CP

“Body”
minislots

“Edge”
minislots

 K = 6 to 16 K = 6 to 16 K = 6 to 16 K = 6 to 16

Figure 7-36 - Pilot Patterns 1-4 for Minislots with 8 Subcarriers

 Figure 2.2: Pilot Patterns 1-4, 2k Mode [12]

© Cable Television Laboratories, Inc. 2014. Used with permission.

(b) The first minislot of an OFDMA frame that is not zero-valued, or

(c) The first minislot after an exclusion band or after one or more contiguous skipped

subcarriers or after a zero valued minislot.

All other minislots assigned to CMs are defined as body minislots. A sample pilot pattern

is illustrated in Figure 2.2, with the white, red, and green squares representing data, pilots,

and complementary pilots, respectively.

Interleaving is typically performed in tandem with symbol mapping. However, as with

FEC encoding, interleaving is outside the scope of this research.

2.1.3 Ranging Mode

To correct for timing and power offsets introduced by the transport delay and attenuation

throughout the channel, a CM is “ranged” in three stages: initial ranging, admission, and

steady state. The progress is illustrated in Figure 2.3.

After a CM is installed or even just reset it must take action to join the system. A CM

14

CM-SP-PHYv3.1-I04-141218 Data-Over-Cable Service Interface Specifications

96 CableLabs� 12/18/14

Table Notes:
Note 1 CNR is defined here as the ratio of average signal power in occupied bandwidth to the

average noise power in the occupied bandwidth given by the noise power spectral density
integrated over the same occupied bandwidth.

Note 2 Channel CNR is adjusted to the required level by measuring the source inband noise
including phase noise component and adding the required delta noise from an external
AWGN generator.

Note 3 the channel cnr requirements are for ofdma channels with non-boosted pilots. For operation
with boosted pilots, which is optional at the cmts, the cnr requirements are increased by a) 1
db for channels with 50 khz subcarrier spacing, and b) 0.5 db for channels with 25 khz
subcarrier spacing. For example, the cnr requirement for qpsk with boosted pilots is 12.0 db
with 50 khz subcarrier spacing and 11.5 db with 25 khz subcarrier spacing.

7.4.16 Ranging
Ranging in DOCSIS 3.1 is divided into three steps, as illustrated in Figure 7-17:

Initial ranging is used by the CMTS to identify a new admitting CM and for coarse power and timing ranging.

Fine ranging is used after initial ranging has been completed, to fine-tune timing and power.

Probing is used during admission and steady state for pre-equalization configuration and periodic TX power
and time-shift ranging.

Figure 7-17 - Ranging Steps

7.4.16.1 Initial Ranging
This section specifies the initial ranging scheme for DOCSIS 3.1.

7.4.16.1.1 Initial Ranging Zone

The initial ranging zone consists of N by M contiguous minislots in the upstream frame. N and M are configured by
the CMTS.

Minislots in the initial ranging zone do NOT carry pilots; all the FFT grid points in the initial ranging zone are used
for the initial ranging signal, as illustrated in Figure 7-18.

Initial
Ranging

Fine
Ranging

Wideband
Probe

Wideband
Probe

Wideband
Probe

Fine
Ranging

Admission

Steady State

Wideband
Probe

Fine
Ranging

Figure 2.3: Ranging Stages of a DOCSIS 3.1 System [12]

© Cable Television Laboratories, Inc. 2014. Used with permission.

seeking to join the system must first undergo initial ranging. During this stage, coarse timing

estimation is performed and the transmit signal power is set. Upon the completion of initial

ranging, the CMs are eligible to be admitted to the system. The admission process begins

with fine ranging, which is used to fine tune the timing and power. The last step of admission

is probing, which is used to further refine the signal power and time. Finally, having been

admitted to the system, the CMs enter steady state; however, fine ranging and probing are

performed periodically to track changes in power and transport delay that happen over time.

For the purposes of this research, it is assumed that all transmitting CMs have already

been admitted to the system, the reasoning for which will be discussed in Section 2.2. There-

fore, only the fine ranging and probing steps are included in the model of the transmitter.

2.1.3.1 Fine Ranging

A fine ranging signal consists of M minislots containing Nfr active subcarriers and Ngb

null subcarriers. The null subcarriers form a guard band from a BPSK-mapped preamble

sequence known to the receiver, which is distributed across the Nfr active subcarriers and

15

 ..R[NFFT-1] R[NFFT-2] R[NFFT-3] R[2] R[1] R[0]

 r0[NFFT-3] r0[2] r0[1] r0[0] r0[NFFT-1] r0[NFFT-2] ...

FFT Window
Integer Timing OffsetFractional Timing Offset

Δ θ

Cyclic PrefixReceived Signal, r[n]

NFFT

NCP

NCP NCP

NCP NFFTNFFT

NFFT

Fractional Delay Filter
(Continuous Signal)

Pre-Equalization Coefficients
(Discontinuous Signal at Cyclic Prefix)

Filter in Steady State

Sb(f)

Fc - B/2
f

0 Fc + B/2-Fc - B/2 -Fc + B/2

-B/2
f

0 B/2

S(f)

S(f)

-51.2 MHz
f

0 51.2 MHzFc_AM -
BAM/2

Fc_AM +
BAM/2

AM Ingress

CP PreamblePreamble Codeword
(repeated)CodewordCS CP

1 symbol

Ngb/2

Ngb/2

K-2 or K-3 symbols

K-4 symbols

1-2 symbol(s)
Nfr

M*Q
Sub-

carriers

Tp-trigger point for the transmission of the fine ranging signal
(one symbol after start of frame)

Start time of the OFDMA frame

CS

Figure 2.4: Fine Ranging OFDMA Frame Structure [12]

© Cable Television Laboratories, Inc. 2014. Used with permission.

duplicated in a second OFDMA symbol. This preamble is then followed by a quadrature

phase-shift keying (QPSK)-mapped data sequence, also duplicated in a second symbol as

depicted in Figure 2.4. The beginning of each fine ranging signal is padded with one empty

OFDMA symbol. The end is also padded with an empty symbol, either one or two depending

on whether K is an even or odd number, respectively.

It is important to note that the fine ranging signal occupies one or more minislots (con-

tiguous in frequency) in one frame. However, the cyclic prefix and roll-off period parameters

for the OFDMA symbols in a frame are different for a fine-ranging signal. Instead of following

the standard cyclic prefix / roll-off period / windowing method, which will be described in

Section 2.1.6, a cyclic prefix is added to the beginning of the first symbol. The second symbol

is then placed immediately after, followed by a cyclic suffix of length NRCP = NRP + NCP .

The structured is illustrated in Figure 2.5, which is taken from the DOCSIS 3.1 Physical

Layer Specification document.

Upon receiving a fine ranging signal, the CMTS estimates the timing and power offsets,

which it then sends downstream back to the CM in another specialized frame1.

1For the purposes of this research, the downstream transmission is assumed to have zero delay, the

ramifications of which will be discussed in Chapter 3.

16

CM-SP-PHYv3.1-I04-141218 Data-Over-Cable Service Interface Specifications

100 CableLabs� 12/18/14

Figure 7-23 - Initial Ranging Symbol Pair Structure

Table 7–15 - Cyclic Prefix and Roll–Off Samples for Initial Ranging

Cyclic Prefix Samples (Ncp) Roll-Off Samples (Nrp)
96 96

128 128
160 160
192 192
224 224
256 224
288 224
320 224
384 224
512 224
640 224

7.4.16.1.7 Initial Ranging with Exclusion Bands and Unused Subcarriers15

Transmission of the initial ranging signal around exclusion bands and unused subcarriers is allowed, under the
limitations described in this section, using the same processing as explained in Section 7.4.16.1.2 with the same
values of Nir and Ngb.

Transmission with exclusion bands and unused subcarriers is illustrated in Figure 7-30.

15 Revised per PHYv3.1-N-14.1210-1 on 12/11/14 by JB.

Symbol X0

Symbol X0 Symbol X0

Symbol X0 Symbol X0
Cyclic

Prefix X0

Cyclic
Suffix X0

Repeat OFDM symbol
N

N N

N NNcp

Ncp
Nrcp =

Ncp + Nrp

Add Prefix and Postfix

Symbol X0 Symbol X0

Nrcp

Add Windowing

2*(N+Ncp)

Symbol X+1

Figure 2.5: Fine Ranging OFDMA Symbol Structure [12]

© Cable Television Laboratories, Inc. 2014. Used with permission.

2.1.3.2 Probing

Probing is accomplished through the use of dedicated “probing frames.” These frames

have the same length as regular frames, but are not organized into minislots. Also the

OFDMA symbols contained in probing frames consist entirely of pilot subcarriers. One

probing fame can be used to probe multiple CMs. Each CM is assigned a different “Start

Subcarrier” and “Subcarrier Skipping” value between 0 and 7. The Subcarrier Skipping

value determines how many subcarriers are skipped, i.e. not used by the CM, beginning

with the Start Subcarrier. For example, if the Start Subcarrier value for one of the CMs

being probed was 0, and the Subcarrier Skipping value was 4, the CM would use every 5th

subcarrier in either 2k or 4k mode beginning with subcarrier 0. Using the largest possible

skipping factor, which is 7, allows for 8 CMs to be probed with a single OFDMA symbol.

Each CM is also designated as either staggering or non-staggering. A non-

staggering CM probes the channel in only one OFDMA symbol using the method described

17

MAC and Upper Layer Protocols Interface Specification CM-SP-MULPIv3.1-I04-141218

12/18/14 CableLabs 125

The CMTS MUST list Probe Information Elements in time-order (earliest symbol first) and subcarrier order (lowest
subcarrier first). The CMTS MAY specify staggered patterns that cross probe frame boundaries. The CMTS MAY
leave any number of probe symbols unallocated. The CMTS MUST NOT allocate bandwidth such that there are
more than k P-IEs outstanding per CM and per individual OFDMA channel where k is the number of symbols in the
OFDMA frame.

A CM MUST be capable of storing k P-IEs per OFDMA channel. The CM MUST NOT transmit in any excluded
subcarrier. When a probe staggered pattern lands on an excluded subcarrier, the CM MUST skip that point in the
pattern and continue the pattern as if it had transmitted in the excluded subcarrier.

All P-IEs in the same P-MAP to the same SID are considered as one probe.

The following figure and table show example Probe frames and the corresponding P-IEs for those probe frames. In
this example, there are 7 symbols per frame in the time domain and 16 subcarriers in the frequency domain with one
of those subcarriers (shown in black in Figure 6-24) representing an excluded subcarrier. Unallocated probe symbols
are shown in white. This example could be extended to any number of subcarriers. In this example, the CMTS is
intending to repeat the probe pattern for the blue, green, yellow, and salmon CMs so that the CMTS receives two
probe symbols per subcarrier from each of these CMs in the set of probe frames. For the medium gray CM, the
CMTS wants all subcarriers probed simultaneously. In this example, the CMTS does not need to probe more than
the 7 CMs shown and decides to leave unallocated the 3 probe symbols (shown in white) in the second frame. Note
that when the CMTS assigns multiple probing opportunities to a CM in the same OFDMA frame (as in the repeated
probe pattern for the blue, green, yellow, and salmon CMs), the CMTS uses the same PW, St, Start Subc, and Subc
Skip values, as per [DOCSIS PHYv3.1].

Figure 6-24 - Sample Probe Frame and P-IEs

Additional Probe Examples:

For the examples below, subcarriers 0-144 are excluded subcarriers.

• Example 1A. PW=0, ST=0, Start Subc=0, Subc Skip=2
CM transmits on subcarriers 147, 150, 153, … with normal power setting.

• Example 1B. PW=1, ST=0, Start Subc=0, Subc Skip=2
CM transmits on subcarriers 147, 150, 153, … with power reduced by 2dB.

• Example 2A. PW=0, ST=0, Start Subc=1, Subc Skip=2
CM transmits on subcarriers 145, 148, 151, … with normal power setting.

Figure 2.6: DOCSIS 3.1 Probing Frame Structure Example [15]

© Cable Television Laboratories, Inc. 2014. Used with permission.

in the previous paragraph. Should a CM be designated as staggering, it will use Subcarrier

Skipping + 1 OFDMA symbols to probe the channel. The Start Subcarrier value is increased

by 1 for each of the symbols used in the probe. Of course the same Subcarrier Skipping factor

is used in all the Subcarrier Skipping + 1 OFDMA symbols as shown in Figure 2.6.

Note that Figure 2.6 illustrates staggering across multiple OFDMA frames. DOCSIS 3.1

specifies this as an optional probing feature; thus, only staggering within a single OFDMA

frame is considered for the purposes of this research.

2.1.4 Pre-Equalization

DOCSIS 3.1 CMs have a pre-equalizer that compensates for the frequency response of

the channel. The pre-equalizer is a set of multipliers that multiplies the inputs to the IFFT

by a unique complex coefficient. Each coefficient is the additive inverse of the channel

frequency response at the frequency of the corresponding subcarrier. This additive inverse

is calculated by the equalizer in the CMTS upon receiving a probing frame. Essentially, the

18

pre-equalization coefficients form the frequency response of an inverted channel that negates

the effects of the fractional timing offset, micro-reflections, and network gain/attenuation.

Naturally, the reverse operation can be also performed in order to simulate channel

impairments. That is to say, a set of coefficients can be calculated and pre-loaded into the

pre-equalizer in order to simulate the fractional timing offset and micro-reflections. The

methodology behind this will be discussed in Sections 2.2.2.1 and 2.2.2.2, respectively.

2.1.5 Inverse Fast Fourier Transform

Following pre-equalization, each subcarrier in the OFDMA symbol is modulated using

an inverse discrete Fourier transform (IDFT). It is well known that the inverse fast Fourier

transform (IFFT) algorithm is an efficient way to compute the IDFT, provided the size of

the IDFT is a power of 2. Since the size of the IDFT in DOCSIS 3.1 is a power of 2, the

remainder of this thesis will refer to the IDFT as an IFFT.

A standard IFFT is defined by:

x[n] = IFFT {X[k]} =
1

NFFT

NFFT−1∑
k=0

X[k]e
j 2πnk
NFFT , 0 ≤ n ≤ NFFT − 1 (2.1)

where NFFT is the size of the IFFT. DOCSIS 3.1, however, uses a modified version of the

IFFT, which is:

x[n] =
1√
NFFT

NFFT−1∑
k=0

X[k]e
j

2πn(k−NFFT /2)

NFFT , 0 ≤ n ≤ NFFT − 1 (2.2)

Clearly, the two main differences between the standard and modified IFFT equations are the

phase shift of −NFFT/2 cycles/sample and the scaling factor of
√
NFFT .

Note that DOCSIS 3.1 also uses a modified version of the standard DFT/FFT formula;

however, the FFT is part of the CMTS functionality, so its discussion is omitted.

When implementing a modified IFFT in a DOCSIS 3.1 system, it may be convenient to

use an existing standard IFFT module and apply the phase shift and scaling factor separately.

There are two methods that can be used to implement the phase shift. The first method

is very straightforward, and involves multiplying the IFFT output by e−jπn, as depicted in

19

Equation 2.3:

x[n] =
√
NFFT · IFFT {X[k]} · e−jπn, 0 ≤ n ≤ NFFT − 1 (2.3)

where IFFT{X[k]} denotes a pre-existing IFFT module. This means that every odd output

will have its sign reversed, as e−jπ = −1 for n odd.

The second method involves changing the order in which the data from each subcarrier

is passed to the IFFT function. The standard practice is to pass the data from subcarrier

0 first, and data from subcarrier NFFT − 1 last. However, if the data from subcarriers

NFFT/2 to NFFT − 1 is passed in first, and is followed by the data from subcarriers 0

to NFFT/2 − 1, the resulting output sequence will be shifted in phase by the appropriate

amount. Ordering the inputs in such a fashion is sometimes referred to as constructing a

“DC-centred” sequence [16].

Accounting for the
√
N scaling factor is another straightforward technique, requiring only

a single multiplication. Technically, from a mathematical standpoint the scaling could be

performed at either the input or the output with the same result; however, from a hardware

perspective it is best to scale at the output to help reduce rounding or truncation errors in

the IFFT module.

2.1.6 Cyclic Prefix, Roll-off Period, and Windowing

Once the IFFT output has been appropriately scaled, three actions are performed on

the resulting time-domain sequence to eliminate inter-symbol interference (ISI) and curtail

out-of-band emissions. The first is the addition of a cyclic prefix, which consists of NCP

samples copied from the end of the OFDMA symbol. The second action is the addition

of a roll-off period suffix, which consists of NRP samples copied from the beginning of the

OFDMA symbol (prior to inserting the cyclic prefix). The values for NRP and NCP can be

found in Table A.1 in Appendix A. DOCSIS 3.1 requires that the value of NRP be less than

NCP in all instances.

The third and final action performed prior to transmission is windowing each OFDMA

symbol. DOCSIS 3.1 specifies a Tukey raised-cosine (RC) window, which it applies over the

20

first and last NRP data symbols (including the cyclic prefix and roll-off). The application

of the window used in the time-domain greatly curtails the spectral leakage into adjacent

frequency bands. The OFDMA symbol is then transmitted, the first NRP symbols being

overlapped with the last NRP symbols of the previous frame. Following this final action,

the signal would normally be passed to an upconverter to transmit the signal in the radio-

frequency (RF) band; however, for reasons discussed in the next section, the signal can be

left at baseband and this step can be bypassed. Thus, the baseband signal is passed directly

to the digital baseband channel that models the RF channel.

2.2 Channel Modelling

2.2.1 Methodology

In addition to modelling a CM transmitter, this research creates a digital baseband model

of a DOCSIS 3.1 cable network. Before delving into specifics, an important assumption

about the channel must be discussed. In any cable network, the conditions of the channel

can change due to a wide variety of environmental and mechanical factors. However, the

changes experienced by the system are usually gradual, and are thus relatively constant over

short periods of time. For example, a cable will likely perform differently during mid-day

than it does during midnight due to temperature differences. Since the channel changes

very slowly relative to the duration of an OFDMA frame, it is assumed to be static (i.e.

time-invariant).

This first assumption must be clarified. Section 2.1.3 mentioned that any CMs trans-

mitting over the channel are assumed to be in steady state, where timing and power offsets

would have been corrected. However, CMs are in steady state long enough for gradual en-

vironmental change, such as a change in temperature, to cause the channel conditions to

change a little. In other words, it must be assumed that the channel has developed some

offsets over a fixed time period, but these offsets will not change during the course of the

simulation. Ultimately, these two assumptions allow the model’s simulation to operate on a

frame-by-frame basis, a topic which is discussed in greater detail in Chapter 3.

21

Another important item to note before moving forward is that analogue signals sent

upstream over a physical DOCSIS 3.1 network are transmitted in a passband of bandwidth

B and centre frequency fc. The signal bounds [fc−B/2,fc+B/2] must be set so that the total

signal bandwidth (maximum 102.4 MHz) lies within the upstream bounds of 5 MHz and 204

MHz. The CMs and CMTS, however, perform all of their signal processing digitally using

complex baseband signals. Thus, for a CM to transmit a signal over a physical network,

it requires an upconverter to shift the signal from baseband to passband. Similarly, the

CMTS requires a downconverter to shift the passband signal back to baseband. Although

both of these converters could be implemented digitally and the channel can be modelled

in passband, a more practical approach is to consider a complex baseband equivalent of the

channel and eliminate the up/down conversions.

To understand how the channel can be modelled using a complex baseband equivalent,

the relationship between a passband signal and its complex baseband equivalent must first

be established. According to [17], this relationship is given as follows:

s(t) = Re
{
sb(t)e

j2πfct
}

=
1

2
sb(t)e

j2πfct +
1

2
s∗b(t)e

−j2πfct (2.4)

where s(t) denotes the passband signal and sb(t) denotes the baseband signal. Thus, a

passband signal can be represented as the sum of two baseband signals that are complex

conjugates of each other, one of which modulates a carrier frequency of fc, the other of which

modulates a carrier of −fc. With this information in mind, the problem of creating a complex

baseband equivalent channel model can now be addressed on an individual impairment basis.

2.2.2 CM-Specific Impairments

2.2.2.1 Timing Offset

The first impairment that will be modelled is the timing offset at the CMTS, which is

necessary for testing timing recovery algorithms used in the ranging modes. Before going into

detail about the timing offset itself, the concepts of a time delayed signal and a discrete-time

model are addressed.

Signals transmitted from a DOCSIS 3.1 CM over an HFC network are subject to transport

22

delay that depend both on the distance between the CM and CMTS and the physical plant.

Since an HFC time-invariant system is considered, the delay is a fixed value, denoted τ ,

which has units of seconds. Thus, a lossless echo-free channel is described by:

y1(t) = ĥ1(t) ∗ x(t) = x(t− τ) (2.5)

where x(t) is the band-limited transmitted RF signal, y1(t) is the received RF signal, and the

‘∗’ operator denotes convolution between x(t) and the RF channel impulse response (CIR),

ĥ1(t), which is in turn given by:

ĥ1(t) = δ(t− τ) (2.6)

To represent the channel in baseband, let xb(t) and yb(t) be the complex baseband

equivalents of x(t) and y1(t), respectively. Then x(t) = Re
{
xb(t)e

j2πfct
}

and y1(t) =

Re
{
y1b(t)e

j2πfct
}

, where fc is the frequency of the RF channel. Substituting these into

Equation 2.5 yields:

Re
{
y1b(t)e

j2πfct
}

= ĥ1(t) ∗ Re
{
xb(t)e

j2πfct
}

(2.7a)

= Re
{
xb(t− τ)ej2πfc(t−τ)

}
(2.7b)

=
1

2
xb(t− τ)e−j2πfcτej2πfct +

1

2
x∗b(t− τ)ej2πfcτe−j2πfct (2.7c)

Equation 2.7b shows that the carrier frequency of the received signal is phase shifted by

an amount proportional to the transport delay. Thus, the complex baseband equivalent of a

single path (i.e. echo free) lossless channel with a fixed transport delay is given by:

y1b(t) = ĥ1(t) ∗ xb(t) = e−j2πfcτxb(t− τ) (2.8)

Discrete-Time Model

The focus of this research is on constructing a digital model for the channel, which means a

discrete-time description is needed. Converting the continuous-time channel of Equation 2.8

to discrete-time requires the application of sampling theory.

Let the digital output of the CM be the complex digital data sequence x[m]. Hypotheti-

cally speaking, each element of this discrete sequence corresponds to a specific voltage level.

23

 ..R[NFFT-1] R[NFFT-2] R[NFFT-3] R[2] R[1] R[0]

 r0[NFFT-3] r0[2] r0[1] r0[0] r0[NFFT-1] r0[NFFT-2] ...

FFT Window
Integer Timing OffsetFractional Timing Offset

Δ θ

Cyclic PrefixReceived Signal, r[n]

NFFT

NCP

NCP NCP

NCP NFFTNFFT

NFFT

Fractional Delay Filter
(Continuous Signal)

Pre-Equalization Coefficients
(Discontinuous Signal at Cyclic Prefix)

Filter in Steady State

Sb(f)

Fc - B/2
f

0 Fc + B/2-Fc - B/2 -Fc + B/2

-B/2
f

0 B/2

S(f)

S(f)

-51.2 MHz
f

0 51.2 MHzFc_AM -
BAM/2

Fc_AM +
BAM/2

AM Ingress

CP PreamblePreamble Codeword
(repeated)CodewordCS CP

1 symbol

Ngb/2

Ngb/2

K-2 or K-3 symbols

K-4 symbols

1-2 symbol(s)
Nfr

M*Q
Sub-

carriers

Tp-trigger point for the transmission of the fine ranging signal
(one symbol after start of frame)

Start time of the OFDMA frame

CS

t
Ts 2Ts 3Ts 4Ts 5Ts 6Ts0

xb(t)

DAC Output

Figure 2.7: Sample and Hold DAC Output vs. Reconstructed Signal

To obtain the analogue signal xb(t), the samples of x[m] must be uniformly spaced apart

at intervals of time Ts such that Ts ≥ 1/B, where B is the bandwidth of the signal (i.e.

xb(mTs) ≡ x[m]). Setting Ts to this value ensures that the Nyquist criteria is met, thus

eliminating aliasing.

Normally at this point, the signal xb(mTs) is sent to a digital-to-analogue converter

(DAC). The DAC “holds” the current value of xb(mTs) until the next sample arrives, produc-

ing an output similar to the one shown in Figure 2.7. As a consequence of this “sample-and-

hold” process, the frequencies of the resulting DAC output signal are replicated periodically

about integer multiples of 2π, thus producing an infinite number of “mirror images”.

To “remove” (i.e. sufficiently suppress) the mirror images and band-limit xb(t), a low-

pass “reconstruction filter” must be applied to the DAC output. The reconstruction filter

interpolates between the samples of the DAC output, resulting in a smoother analogue signal.

Theoretically, the optimal reconstruction filter is a “brick-wall” filter, which has the following

frequency response:

Hc(e
jω) =

1 |ω| < B/2

0 |ω| > B/2

(2.9)

Taking the inverse Fourier transform of the brick-wall filter’s frequency response produces

its time-domain equivalent, which is a sinc function:

sinc(t) =
sin(πt)

πt
(2.10)

24

Thus, the analogue baseband signal xb(t), band-limited to B/2, can be represented as:

xb(t) =
∑
m

x[m] sinc

(
t−mTs
Ts

)
(2.11)

Note that the ideal sinc function has an infinite impulse response, which makes it unsuitable

for implementation in a practical setting. However, its use will suffice for the purpose of a

theoretical explanation.

Substituting the discrete-time representation of xb(t) into Equation 2.8 yields:

y1b(t) =
∑
m

x[m]e−j
2πFcτ
Fs sinc

(
t− (τ +m)Ts

Ts

)
(2.12)

where the transport delay τ is now in units of samples, Fc is the carrier frequency in Hz,

and Fs is the sampling frequency in cycles/sample.

To obtain a complete discrete-time description of the channel, y1b(t) must be sampled

by an analogue-to-digital converter (ADC). Before this sampling occurs, y1b(t) is typically

passed through a low-pass “anti-aliasing filter,” which, for the purposes of this research, is

assumed to be identical to the reconstruction filter described earlier (i.e. a sinc function).

The anti-aliasing filter eliminates any high-frequency components introduced by noise in the

channel, thus band-limiting y1b(t) to B/2. The ADC is then used to sample the band-limited

signal such that y1b(nTs) ≡ y1[n], where y1[n] is the discrete-time signal processed by the

receiver. Here the variable n is used instead of m in order to differentiate between the

samples of the CMTS and the CM. Equation 2.12 therefore becomes:

y1[n] =
∑
m

x[m]e−j
2πFcτ
Fs sinc(n−m− τ) (2.13)

The above equation can be simplified using the method described in [17]. First, let

k = n−m, such that:

y1[n] =
∑
k

x[n− k]e−j
2πFcτ
Fs sinc(k − τ) (2.14)

Next, define the channel impulse response to be:

ĥ1[k] = e−j
2πFcτ
Fs sinc(k − τ) (2.15)

25

Substituting Equation 2.15 into Equation 2.14 then yields:

y1[n] =
∑
k

ĥ1[k]x[n− k] (2.16)

In this simplified equation, ĥ1[k] represents the kth complex channel filter tap at time n.

Each tap can be thought of as samples of the low-pass filtered baseband channel impulse

response ĥ1(t) convolved with the function sinc(t/Ts) [17].

Now that the fundamentals of a time-delayed channel have been addressed and a discrete-

time representation has been established, the focus can be shifted towards the timing offset.

The next two subsections provide a detailed description of the integer and fractional com-

ponents of the timing offset, as well as the techniques used to model both components.

Integer Timing Offset

The CMTS recovers OFDMA symbols by applying an FFT “window” of size NFFT to

the received signal. This process is depicted in Figure 2.8. In a perfectly time-synchronized

system, the incoming frame would be sampled at exactly the same points as the samples

at the output of the IFFT in the CM. However, when a CM first joins the network, the

transport delay of the channel is unknown to the CMTS. As a result, the sampling reference

is lost. This causes two problems:

1. the sampling points in the CMTS do not line up with the samples at the output of the

IFFT in the CM, and

2. the CMTS does not know where to place the FFT window.

…..R[NFFT-1] R[NFFT-2] R[NFFT-3] R[2] R[1] R[0]

…..... r0[NFFT-3] r0[2] r0[1] r0[0] r0[NFFT-1] r0[NFFT-2] ...

FFT Window
Integer Timing OffsetFractional Timing Offset

Δ θ

Cyclic PrefixReceived Signal, r[n]

Figure 2.8: Timing Offset of a Received OFDMA Frame

26

The integer timing offset is defined as the integer portion of time in units of samples between

the first sample extracted for the FFT, i.e. the first sample in the FFT window, and the

first sample of the OFDMA symbol.

As mentioned in Section 2.1.3, the integer timing offset can be estimated using rang-

ing signals. A standard estimation technique involves running the received samples of the

ranging signal through a correlation algorithm. Recall from Section 2.1.3.1 that the ranging

signal contains a preamble sequence that is known to the CMTS. The correlation algorithm

compares each sample of the received ranging signal against this preamble sequence until the

samples line up. The integer timing offset is then calculated based on the difference between

the alignment point and the first sample received. Note that if the offset lies within the

interval of −NCP +NRP ≤ θ ≤ 0 samples relative to the first sample of the OFDMA frame,

no ISI will be introduced to the system. Any other value of θ will result in ISI [18] [19].

From the processes described above, it is clear that the transport delay and the timing

offset are not the same. While the transport delay is a fixed value, the integer timing offset

will grow smaller and eventually reach zero as it is iteratively corrected in a sequence of

ranging frames. As such, the integer portion of the transport delay of the received signal, τ

(samples), in Equation 2.15 can be replaced with the integer timing offset, henceforth denoted

as θ, also in units of samples. It is important to note, however, that this substitution does

not encompass the phase shift of the carrier frequency introduced by converting the signal

to baseband. This shift will always be dependent upon the “cable” distance between the

CM and the CMTS. Thus, Equation 2.15 can be re-written as:

ĥ2[k] = e−j
2πFcτ
Fs sinc(k − θ −∆) (2.17)

where ∆ represents the remaining fractional component of the transport delay in units of

samples, which will be discussed in the following subsection.

From Equation 2.17, it is clear that the integer timing offset can be simulated by simply

inserting an integer number of delays into the received signal.

27

Fractional Timing Offset

Although the CMTS is able to estimate the integer portion of the timing offset via

ranging, there will almost always exist a fractional part of the timing offset that ranging

is unable to correct. As such, the fractional timing offset, henceforth referred to as ∆

in units of samples, will remain constant no matter how many iterations of ranging are

performed (assuming a static channel with perfect frequency synchronization). Its value will

therefore be equal to the fractional portion of the transport delay, which can vary between

−0.5 ≤ ∆ ≤ 0.5 samples.

Two methods for simulating the fractional timing offset were explored during this re-

search. The first method involved placing a fractional delay filter along the main channel

path. Designs for this filter will be discussed in great detail in Chapter 4. The second

method involved the use of pre-equalization coefficients, as discussed in Section 2.1.4. The

coefficients for a single CM can be calculated by assuming that the fractional timing offset

is the only impairment present in the channel, which would cause it to have the following

frequency response:

Ĥ2(ejw) = e
−j 2π∆n

NFFT , −NFFT

2
≤ n ≤ NFFT

2
− 1 (2.18)

Ultimately, pre-equalization coefficients proved to be the most effective method for sim-

ulating the fractional timing offset. The reasoning behind this choice will be explored in

Chapter 4.

With a firm understanding of transport delay effects and the timing offset now established,

the theory behind multipath propagation and micro-reflections can be explored.

2.2.2.2 Micro-reflections

An HFC network is comprised of a wide variety of components, including numerous

splitters and bidirectional amplifiers, all of which are used to connect a large number of CMs

to a CMTS. If the connector of an amplifier or any other network component along the main

path becomes corroded or is improperly terminated, an impedance mismatch occurs [20].

28

CMTS
main path echo 1 echo 2

Legend:

 = bidirectional amplifier

 = impedance mismatch

 = splitter
original
signal

d3

d2

d1

d1 d2 d3

t1

t2

t3

echo 1

echo 2

main path

Distance from CMTS

Ti
m

e

80%

3.2%

0.032%

100%

20%
16%

4%

0.8%
0.64%

0.16%

0.128%

Figure 2.9: Example of Micro-reflections in an HFC Network

When a signal travelling upstream encounters this impedance mismatch, part of its energy

is reflected back towards the CM. If there is another impedance mismatch in the network,

the reflected signal will be re-reflected. This produces echoes within the system that are

attenuated and offset in phase. Eventually, these echoes will reach the CMTS where they

will add to the main signal and cause unwanted amplitude and phase distortion [21].

For a visual representation of this effect, consider the example provided in Figure 2.9.

Here, two impedance mismatches are present: one at the input of an amplifier, and one at

the output of a different amplifier. It is assumed that the signal is attenuated by 20% each

time it is reflected by an impedance mismatch. The figure illustrates the first two echoes

that occur in the system. Echo 1 has a total travel time equal to t2 and an amplitude that

is 3.2% relative to the original signal. Echo 2 has a total travel time equal to t3 and an

29

Table 2.1: DOCSIS 3.1 Micro-reflection Categories [12]

Attenuation (dBc) Echo Time (µs) Echo Time (samples)

-16 ≤ 0.5 ≤ 51.2

-22 ≤ 1.0 ≤ 102.4

-29 ≤ 1.5 ≤ 153.6

-35 > 2.0 > 204.8

-42 > 3.0 > 307.2

-51 > 4.5 > 460.8

amplitude that is 0.128% relative to the original signal.

DOCSIS refers to echoes as “micro-reflections,” and groups them according to both their

attenuation and “echo time” (i.e. travel time/transport delay). A stronger echo corresponds

to a shorter echo time, as the cable has less of an opportunity to attenuate the echo over

shorter distances. Previous versions of the standard, namely DOCSIS 3.0, accounted for

up to three bounded micro-reflections in separate categories. DOCSIS 3.1 specifies a better

maintained plant that has at most a single bounded micro-reflection. The categories provided

for this single echo are listed in Table 2.1, where dBc is deciBels relative to the carrier signal,

which is assumed to have a gain of unity.

Taking micro-reflections into account, Equation 2.17 can be expanded as follows:

ĥ3[k] = e−j
2πFcτ
Fs

(
sinc(k − θ −∆) +

P∑
p=1

10
Ap
20 e−j

2πFcτp
Fs sinc(k − τp)

)
(2.19)

where P is the number of micro-reflections, Ap is the echo attenuation of each micro-reflection

in dBc, and τp is the echo time of each micro-reflection in samples. To help simplify this

equation, the complex attenuation experienced by each micro-reflection can be represented

as a single variable αp such that:

αp = 10
Ap
20 e−j

2πFcτp
Fs (2.20)

30

Equation 2.19 then becomes:

ĥ4[k] = e−j
2πFcτ
Fs

(
sinc(k − θ −∆) +

P∑
p=1

αp sinc(k − τp)

)
(2.21)

Thus, for the purposes of this research, micro-reflections can be modelled by adding

additional paths to the channel that delay, attenuate and shift the phase of the original

signal. Note that only one additional path is required for DOCSIS 3.1 modelling (i.e. P = 1

in Equation 2.21); however, should a user wish to model multiple micro-reflections, more

paths may be added.

To simulate the echo time of micro-reflections, the same techniques discussed in Sec-

tion 2.2.2.1 can be used. This involves delaying the signal by an integer to simulate the

integer portion of the echo time, and using either pre-equalization coefficients or a fractional

delay filter along the echo path to simulate the fractional portion. It is important to note,

however, that fractional delay filters are capable of simulating the effects of micro-reflections

more accurately than pre-equalization coefficients. To understand why, consider the equation

used to generate micro-reflection pre-equalization coefficients:

Ĥ4(ejw) = 1 +
P∑
p=1

αpe
−j 2πnτp

NFFT , −NFFT

2
≤ n ≤ NFFT

2
− 1 (2.22)

Similar to Equation 2.18, this equation represents the frequency response of the channel;

however, this time only micro-reflections are assumed to be present. The pre-equalization

coefficients once again apply a type of “phase ramp” across the spectrum, allowing them to

apply their effects to each individual subcarrier as desired. The problem arises when the

cyclic prefix and roll-off are added to the signal following modulation by the IFFT.

In reality, a micro-reflection contains a delayed version of the entire signal that is trans-

mitted by a CM. However, if the micro-reflection is simulated prior to the IFFT, the samples

selected for the cyclic prefix and roll-off will have already been affected by the micro-reflection

at a different time. This results in a discontinuous signal, as illustrated in Figure 2.10.

Since the cyclic prefix and roll-off are removed when the CMTS begins extracting the

received OFDMA symbol, the discontinuities that occur when simulating micro-reflections

31

NFFT

NCP

NCP NCP

NCP NFFTNFFT

NFFT

Fractional Delay Filter
(Continuous Signal)

Pre-Equalization Coefficients
(Discontinuous Signal at Cyclic Prefix)

Filter in Steady State

Figure 2.10: Trade-off Between Simulating Micro-reflections Using Fractional Delay

Filter vs. Pre-Equalization Coefficients

using pre-equalization coefficients would technically not affect the results of the simulation.

This is, however, assuming that no timing offset exists, which is not the case in this model.

Therefore, the best way to simulate micro-reflections is to use add an integer delay to the

main path signal followed by a fractional delay filter. This will ensure that all parts of the

transmitted signal are delayed equally with no discontinuities.

2.2.2.3 Carrier Phase Offset and Carrier Frequency Offset

In a typical upstream communications system, different crystal oscillators control the

upconverter and downconverter. DOCSIS 3.1 intends that both of these oscillators be phase-

locked to the CMTS reference oscillator, which runs at a frequency of 10.24 MHz. However,

DOCSIS 3.1 allows for oscillators to be frequency-locked but not phase-locked, which means

they will not be synchronized. Thus, a carrier phase offset (CPO) and a carrier frequency

offset (CFO) could be introduced. To account for these offsets, Equation 2.21 is modified as

follows:

ĥ5[k] = e
−j 2πnν

NFFT
+φ
e−j

2πFcτ
Fs

(
sinc(k − θ −∆) +

P∑
p=1

αp sinc(k − τp)

)
(2.23)

where φ is the CPO in radians and ν is the CFO in terms of subcarrier spacings. Depending

on the severity of the discrepancies between oscillators, the CFO may be more than 1 sub-

carrier spacing; thus, it can be modelled as having integer and fractional components η and

ε, respectively, such that ν = η + ε. The integer portion of the CFO, η, shifts the data onto

other subcarriers, while the fractional portion, ε, produces inter-carrier interference (ICI)

32

between subcarriers [22].

In a DOCSIS 3.1 network, the CFO is initially estimated and corrected using downstream

tracking. Specifically, the CM must lock the upstream subcarrier clock (25 kHz or 50 kHz) to

the master downstream clock rate of the CMTS with an accuracy of 0.4 ppm. The individual

subcarrier frequencies themselves must be accurate within ±30 Hz of the master clock rate.

Should the channel conditions change over time, the CMTS can also make use of the pilots

and complementary pilots sent by a CM to track changes in the CFO, thus ensuring that

the CFO stays within the bounds defined above. The same pilots and complementary pilots

are also used to initially estimate and correct the CPO, and can similarly be used to track

its changes over time.

Given the tight frequency restrictions imposed upon the CFO, it is clear that only its

fractional portion, ε, need be modelled in this research; thus, its integer portion, η, can be

omitted, and ν becomes ε in equation Equation 2.23. The equation can be further simplified

by absorbing the timing-offset-induced carrier phase shift term of Equation 2.23 into the

CPO term, φ, as the net effect CPO is a rotation of the received QAM constellation points

between −π and π radians. The simplified equation is as follows:

ĥ6[k] = e
−j 2πnε

NFFT
+φ
e−j

2πFcτ
Fs

(
sinc(k − θ −∆) +

P∑
p=1

αp sinc(k − τp)

)
(2.24)

2.2.2.4 Network Gain

The degree of attenuation experienced by a signal travelling through a DOCSIS 3.1

network is dependent upon the type of coaxial cables and amplifiers that are used. Ca-

ble manufacturers typically specify the attenuation in a coaxial cable in dB/ft or dB/m.

Properly distributed amplifiers will compensate more or less for the cable attenuation; how-

ever, the amplifiers cannot track attenuation/gain changes due to environmental changes

The gain/attenuation between the CM and the CMTS, which is referred to as the “network

gain/attenuation,” is modelled as a scaling factor, A, in dB. This yields a channel impulse

33

response:

ĥ7[k] = 10
A
20 e
−j 2πnε

NFFT
+φ

(
sinc(k − θ −∆) +

P∑
p=1

αp sinc(k − τp)

)
(2.25)

Note the impulse response assumes the environmental changes are essentially constant for

the duration of a frame so the attenuation/gain A is a constant. A network gain/attenuation

between -9 dB and +3 dB is selected for this model, which represents the maximum range

of the CMTS’s input power settings outlined in the DOCSIS 3.1 standard [12].

In the digital channel model described in Figure 1.2, the network gain/attenuation could

theoretically be applied anywhere between the transmitter and the combination of transmit-

ted signals. However, the input design parameters for any required fractional delay filters

can be relaxed substantially if the network gain/attenuation is applied post-filtering. This,

in turn, may help reduce the quantization noise generated by truncating products in the

filter, depending on the filter implementation. Thus, the network gain/attenuation in a dig-

ital model should be applied immediately prior to the combination of transmitted signals,

as depicted in Figure 1.2.

Correcting for the network gain/attenuation is accomplished by adjusting the power at

the output of the CM (i.e. before the signal enters the channel).

2.2.3 Common Channel Impairments

In the digital model, channel impairments common to all CMs are implemented after

the transmitted signals from each CM have been combined. Of course the CM-specific

impairments are implemented prior to combining the signals. However, the equations derived

in Section 2.2.2 only apply to a single CM. Thus, an equation that accounts for multiple

CMs must be created. This is given by:

y[n] =

NCM∑
i=1

∑
k

10
Ai
20 e
−j 2πnεi

NFFT
+φ × ...(

sinc(k − θi −∆i) +
P∑
p=1

αp,i sinc(k − τp,i)

)
x[n− k] (2.26)

34

where NCM is the number of CMs connected to the system and i is the index of each CM.

By defining:

hi[k] = 10
Ai
20 e
−j 2πnεi

NFFT
+φi

(
sinc(k − θi −∆i) +

P∑
p=1

αp,i sinc(k − τp,i)

)
(2.27)

the channel equation can be simplified to:

y[n] =

NCM∑
i=1

∑
k

hi[k]xi[n− k] (2.28)

The signal y[n] from Equation 2.28 will be used throughout the remainder of the chapter to

denote the received signal before any common channel impairments have been applied. The

remainder of this chapter will focus on constructing the signal r[n] (given in Equation 2.40),

which represents the final received signal with all impairments applied.

2.2.3.1 Carrier Hum Modulation

In North America, power is typically supplied to an HFC system by a periodic quasi-

square waveform with frequency 60 Hz. This waveform is often transmitted along the same

wire as the transmitted signal. Carrier hum modulation occurs when the transmitted signal is

amplitude modulated by the power supply waveform. [23]. Carrier hum modulation has two

main sources, the most obvious source being a voltage ripple at the output of an amplifier.

A secondary source can be attributed to parametric modulation of magnetic component

properties (i.e. inductors and/or transformers) [24]. Both sources are due to either faulty or

degraded internal amplifier components

The power supply waveform itself is typically modelled as a trapezoidal waveform [23]

[24] [25], with rise and fall times of approximately 250 µs [25]. Since the rise and fall times

are so small compared to the period of the trapezoidal waveform, the waveform itself can

also be approximated by clipping a 60 Hz sinusoid at the correct intervals.

To represent the carrier hum waveform mathematically, consider the following sinusoid:

xhum(t) = sin (2πFhumt+ φhum) (2.29)

where Fhum is the carrier hum frequency and φhum is a phase shift in radians. By setting φhum

and evaluating this sinusoid at the transition time, ttrans, its maximum clipped amplitude

35

can be determined. Scaling the waveform by its maximum clipped amplitude and applying

basic sampling theory yields a discrete-time description of the carrier hum waveform:

mhum[n] =

10
−Ahum

20 , xhum[n] > 1

−10
−Ahum

20 , xhum[n] < −1

10
−Ahum

20 xhum[n], otherwise

(2.30)

where xhum[n] ≡ xhum(nTs). The received signal is then amplitude modulated onto the

discrete-time carrier hum waveform:

r1[n] = y[n](1 +mhum[n]) (2.31)

DOCSIS 3.1 specifies the carrier hum modulation in the upstream be limited to less than

-26 dBc, or 5% of the total signal power; thus, the clipped sinusoid should be scaled by a

maximum factor of Ahum = 26 dBc.

2.2.3.2 Ingress Noise

Ingress noise is the result of external narrowband AM and/or FM signals entering the

HFC network. This typically occurs if a cable line is breached or a connector becomes

corroded [26]. If the ingress signal is strong enough, it can cause a “spur” in the upstream

spectrum, potentially rendering any subcarriers at or near its frequency useless.

To digitally model ingress noise, a baseband AM and/or FM signal must be generated

and added to the received signal. The first step in generating either type of baseband signal

is to determine its bandwidth, which is regulated by the International Telecommunication

Union (ITU) and is easily available. Once this has been established, a baseband message

signal whose frequencies lie within the bandwidth is generated. For the purposes of this

research, both AM and FM message signals are defined as the following sum of sinusoids:

m[n] =

Q∑
q=1

Amq cos

(
2π
Fm
q

Fs
n+ φmq

)
(2.32)

In Equation 2.32, Q represents the number of sinusoids in a message signal, Fs represents

the sampling frequency, and Amq , Fm
q and φmq represent the amplitude, frequency and phase

36

of each sinusoid, respectively. Note in this case the superscript is used like a subscript. It

does not indicate “raised to the power of m.”

After the message signal has been generated, it amplitude modulates (AM) or frequency

modulates (FM) a carrier signal, the frequency of which is again regulated by the ITU. This

carrier signal is defined relative to the baseband spectrum of the OFDMA signal as follows:

cAM [n] =
C

2
ej(2π Fc

Fs
n+φc), −51.2 MHz < Fc < 51.2 MHz (2.33)

where C is the carrier amplitude and φc is the carrier phase.

AM ingress noise is thus represented as:

IAM [n] = c[n](1 +m[n]) (2.34)

To create a discrete-time representation of the FM noise, however, its continuous-time equa-

tion must first be examined, which is:

IFM(t) = c(t)ej2πf∆

∫ t
0 m(τ)dτ (2.35)

where f∆ in Equation 2.35 is the peak frequency deviation of the FM signal [27]. Note that

the message signal is integrated over time, with τ , in this case, serving as the placeholder

variable of integration, which is not its usual role of representing transport delay. In discrete-

time, this becomes:

IFM [n] = c[n]ej2πf∆mint[n] (2.36)

where the integral is replaced by:

mint[n] =
n∑

n′=n0

m[n′]Ts (2.37)

which is approximately the Riemann sum of the message signal, where n0 represents the

starting index and Ts = 1/Fs is the sampling time.

With discrete-time representations of both ingress noise types established, their effect on

the received signal can be modelled by adding Equations 2.34 and 2.36 to Equation 2.31,

which yields:

r2[n] = y[n](1 +mhum[n]) +
U∑
u=1

IAM u[n] +
V∑
v=1

IFM v[n] (2.38)

37

where U is the total number of AM ingress signals and V is the total number of FM ingress

signals.

2.2.3.3 Additive White Gaussian Noise

The final impairment considered in this model is thermal noise, which is generated by

the random movement of electrons [28]. Thermal noise can be found in all communication

systems. It is considered to be approximately “white”, meaning that it has a power spectral

density (PSD) that is essentially flat over all frequencies. Thermal noise within a finite

bandwidth is modelled as having a zero-mean Gaussian amplitude distribution; thus, another

common term for thermal noise is additive white Gaussian noise, or AWGN as it is henceforth

referred to.

To simulate AWGN, random noise must be generated and scaled by its variance. For the

purposes of this model, the AWGN variance, σ2
w, is defined as [18]:

σ2
w = E

{
|X[n]|2

}
10−

CNR
10 (2.39)

where E {|X[n]|2} is the average energy in each employed QAM constellation and the CNR

is the carrier-to-noise ratio in dBc. Since DOCSIS 3.1 requires that each QAM constellation

be scaled to ensure their average energy is unity, E {|X[n]|2} = 1. The CNR is defined by the

DOCSIS 3.1 standard as the ratio of average signal power in the occupied bandwidth to the

average noise power in the occupied bandwidth given by the noise power spectral density

integrated over the same occupied bandwidth. Normally, the CNR is varied to test the

channel under different noise conditions; however, it is important to note that the standard

outlines minimum CNR values that must be met for each individual QAM constellation, all

of which are provided in Table 2.2.

Adding AWGN to the received signal yields the final equation of this chapter:

r[n] = y[n](1 +mhum[n]) +
U−1∑
u=0

IAM u[n] +
V−1∑
v=0

IFM v[n] + w[n] (2.40)

where w[n] is the low-pass filtered noise sampled at time Ts (i.e. w[n] = w(nTs). This final

equation accounts for the effects of all CM-specific (y[n]) and common channel impairments

contained in this model.

38

Table 2.2: DOCSIS 3.1 CNR Values [12]

Constellation CNR (dB)

QPSK 11.0

8-QAM 14.0

16-QAM 17.0

32-QAM 20.0

64-QAM 23.0

128-QAM 26.0

256-QAM 29.0

512-QAM 32.5

1024-QAM 35.5

2048-QAM 39.0

4096-QAM 43.0

39

3. MATLAB Model

3.1 Overview

This chapter provides a detailed description of the MATLAB model used to simulate the

functionality of the cable modems (CMs) and upstream channel as specified in the data-over-

cable service interface specification (DOCSIS) 3.1 standard. In general, the model is capable

of simulating traffic, fine ranging, and probing transmissions, along with all of the channel

impairments discussed in the previous chapter. All simulations are performed on a frame-

by-frame basis, which allows any corrections based on fine ranging or probing information

to be made between frames.

3.1.1 Program Flow

The MATLAB simulation is run from a script named main.m. Prior to running main.m,

the user must first set up the simulation by specifying the number of frames to be sent,

the structure of each orthogonal frequency-division multiple access OFDMA frame, and

the channel settings. This is accomplished by declaring the appropriate variables in the

MATLAB workspace.

Following the initial setup, the program calls the function Channel Setup, which gen-

erates pseudo-random values for the channel offsets. The program then enters the main

loop, which repeatedly calls the Transmitter and Channel functions until all OFDMA

frames have been generated and passed through the channel. The result is a single Rx vector

containing the combined “received” signals of each CM.

Since modelling a DOCSIS 3.1 receiver is beyond the scope of this project, no receiver

40

function is included in the MATLAB simulation. Should the user desire to test a receiver

function, it should be placed in the main loop immediately following the Channel function.

This will allow the receiver to decode each frame’s Rx signal vector individually.

A comprehensive program flow diagram is provided in Figure 3.1. The inner workings

of the functions depicted in Figure 3.1, along with the program setup process, are described

in detail throughout the remaining subsections of this chapter. However, before any specific

details are discussed, it is important to understand how several key components of the

MATLAB model are structured.

3.1.2 Variable Structuring

One of the most useful features of MATLAB is its visual command interface. A user is

able to view and interact with the contents of an array in the “Variables” window simply

by double-clicking on its variable name in the “Workspace” window. This can be highly

advantageous when debugging or running tests using the model. In order to allow the user

to make full use of this feature, several guidelines were followed when creating and storing

variables.

First, all important output vectors are stored on a CM-by-CM basis using cell arrays.

These cell arrays, in turn, may be stored in additional cell arrays on a frame-by-frame basis

in order to preserve data throughout a multi-frame simulation. Several variables which use

this technique are given in Table A.8 in Appendix A. Should the user desire to store more

variables in such a fashion, they must construct their own cell arrays in the main.m script.

Second, in the case of Tx (transmitted) and Rx (received) signal vectors, the first element

of the vector is the first item transmitted and the first item received, respectively.

41

Transmitter

Channel

Channel_Setup

Transmitter

Channel

Set Num_frames, Num_CM, and
Channel Variables

Declare new Frame Structure
Variables

Tx

Rx

Receiver

Impairment enables
and randomly

generated channel
offsets

Loop for
Num_frames

Main loop

Correct for offsets on next frame if
probing or ranging was performed

Recovered data
sequences, frame by

frame

main.m

Traffic ModeFine Ranging Mode Probing Mode

CM_mode Select

Correct for Network Gain

Body or Edge minislot

Generate random binary data
sequence to be transmitted

Format BPSK preamble

Generate random binary data
sequence to be transmitted

Generate pilot symbols

PRBS_LFSR

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing using standard

method

OFDM_Tx

Construct OFDMA frame for
current CM from probing-

specific variables and BPSK
pilot symbols

Probing

Construct OFDMA frame for
current CM from BPSK pilots

and QAM-mapped
complementary pilots and data

Construct OFDMA frame for
current CM from BPSK

preamble and QPSK data

Select appropriate pilot pattern

Pilot_Pattern

Map data using QPSK

ModSquare

QAM_Constellation

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing alternate ranging

method

OFDM_Tx_Ranging

Map data and complementary
pilots using appropriate QAM

constellation

ModSquare

QAM_Constellation

tx_CM

Loop for
Num_CM

Main loop

Baseband Carrier Phase Offset

Carrier Frequency Offset

Carrier Hum Modulation

AWGN

Loop for
Microref_num
(normally = 1)

Integer Timing Offset

Rx_Timing_Integer_Offset

Micro-reflections

Microreflection_Filter

Ingress Noise (AM/FM/Block)

Ingress

Loop for length
of Ingress input

vectors

Loop for
Num_CM

Main loop

Micro-reflection loop

Ingress Noise loop

rx

rx_CM

Probing

Is Stagger high?

Is start_SC <= SC_skip?

Was the previous
Sym_in_frame staggered?

Error! Invalid
Setup

Was the previous
Sym_in_frame staggered?

Is start_SC <= SC_skip?

Has the previous Sym_in_frame
already been written to?

Place the CM s pilot symbols
on the specified Sym_in_frame

in a non-staggered fashion
every SC_skip subcarriers,

beginning with start_SC Place the CM s pilot symbols
on the specified Sym_in_frame

in a staggered fashion every
SC_skip subcarriers, beginning

with start_SC

Are the number of staggered
OFDMA symbols less than the

total number of OFDMA
symbols available?

Loop for
SC_skip,

incrementing
start_SC by 1

each time

NO YES

NO NO

NO
NO

NO
NO

YES YES

YES

YES

YES

YES

Convert each OFDMA symbol
in the frame to time-domain Tx
signal using IFFT. Apply CP,

RP and windowing using
standard method

OFDM_Tx

Correct for Network Gain

tx_CM

Loop for
Num_CM

Main loop

Figure 3.1: Program Flow Diagram

42

Finally, while the first element of any array is assigned a MATLAB index of “1”, this

element is still referred to in the documentation by its theoretical index of “0” when dealing

with sub-carriers and OFDMA symbol numbers. CMs, frames, and channel impairment

signals, however, are indexed according to MATLAB’s system, as described by the equations

derived in Chapter 2 (i.e. CM #1 is the first CM, frame #1 is the first frame, Ingress #1 is

the first ingress, etc.).

3.2 Initial Setup

The MATLAB model was designed to give users the maximum amount of control possible

over both the transmitter and channel impairment settings in order to provide a wide range

of test scenarios. Consequently, a large number of input variables must be manually specified

by the user before a simulation can be run. The input variables can be divided into two

main categories: frame structure variables and channel variables.

3.2.1 Frame Structure Variables

The OFDMA frame structure variables can be further subdivided into three separate

subcategories: general, fine ranging, and probing. General variables must be specified for

any given frame, while fine ranging and probing variables must only be specified if a frame

contains data from CMs that are in either mode, respectively. Descriptions and parameters

for all variables in these three subcategories are provided in Tables A.1, A.2, and A.3,

respectively, in Appendix A.

In order to produce these variables, it is recommended that the user list them individually

in a customized MATLAB script. It is important to note that if the values of any of the

variables are changed from frame to frame, the variables must be updated prior to calling

the function Transmitter.

3.2.2 Channel Variables

The channel settings can be specified by manually altering the variables provided under-

neath the commented section in main.m labelled “Channel”. Most importantly, the channel

43

variables must be specified prior to calling the function Channel Setup. Descriptions and

parameters for these variables are provided in Table A.5 in Appendix A.

In general, for most channel impairments to be applied, their respective enable variables

must be set to “1”. Unlike the frame structure variables, the channel variables need only be

declared once, and are valid for the entire run of the simulation.

3.3 Offset Generation

Once the initial setup has been completed, main.m can be run. The first function called

by the main.m is Channel Setup. Channel Setup performs two primary tasks. The

first task is checking the channel variables for errors. If all of the channel variable values

are valid, Channel Setup will then move onto its second task, which involves generating

pseudo-random offsets for the channel impairments that were selected for simulation. A

description of these offsets is provided in Table A.4.

Note that the main-path fractional timing offset, while generated in terms of samples, is

applied through the use of pre-equalization coefficients.

3.4 Transmitter

Having checked and generated all channel variables, the program then enters the main

loop. The first function that is called in the main loop is Transmitter, which is used to

generate OFDMA frames and convert them into Tx signal vectors. A flow diagram for the

Transmitter function is provided in Figure 3.2.

Upon instantiation, Transmitter calls the sub-function PRBS LFSR, which generates

the probing symbol for each individual sub-carrier according to the DOCSIS 3.1 physical

layer specification. Transmitter then converts the probing symbols to binary phase-shift

keying (BPSK), and performs error checking on the general frame structure variables.

44

Transmitter

Channel

Channel_Setup

Transmitter

Channel

Set Num_frames, Num_CM, and
Channel Variables

Declare new Frame Structure
Variables

Tx

Rx

Receiver

Impairment enables
and randomly

generated channel
offsets

Loop for
Num_frames

Main loop

Correct for offsets on next frame if
probing or ranging was performed

Recovered data
sequences, frame by

frame

main.m

Traffic ModeFine Ranging Mode Probing Mode

CM_mode Select

Correct for Network Gain

Body or Edge minislot

Generate random binary data
sequence to be transmitted

Format BPSK preamble

Generate random binary data
sequence to be transmitted

Generate pilot symbols

PRBS_LFSR

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing using standard

method

OFDM_Tx

Construct OFDMA frame for
current CM from probing-

specific variables and BPSK
pilot symbols

Probing

Construct OFDMA frame for
current CM from BPSK pilots

and QAM-mapped
complementary pilots and data

Construct OFDMA frame for
current CM from BPSK

preamble and QPSK data

Select appropriate pilot pattern

Pilot_Pattern

Map data using QPSK

ModSquare

QAM_Constellation

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing alternate ranging

method

OFDM_Tx_Ranging

Map data and complementary
pilots using appropriate QAM

constellation

ModSquare

QAM_Constellation

tx_CM

Loop for
Num_CM

Main loop

Baseband Carrier Phase Offset

Carrier Frequency Offset

Carrier Hum Modulation

AWGN

Loop for
Microref_num
(normally = 1)

Integer Timing Offset

Rx_Timing_Integer_Offset

Micro-reflections

Microreflection_Filter

Ingress Noise (AM/FM/Block)

Ingress

Loop for length
of Ingress input

vectors

Loop for
Num_CM

Main loop

Micro-reflection loop

Ingress Noise loop

rx

rx_CM

Probing

Is Stagger high?

Is start_SC <= SC_skip?

Was the previous
Sym_in_frame staggered?

Error! Invalid
Setup

Was the previous
Sym_in_frame staggered?

Is start_SC <= SC_skip?

Has the previous Sym_in_frame
already been written to?

Place the CM s pilot symbols
on the specified Sym_in_frame

in a non-staggered fashion
every SC_skip subcarriers,

beginning with start_SC Place the CM s pilot symbols
on the specified Sym_in_frame

in a staggered fashion every
SC_skip subcarriers, beginning

with start_SC

Are the number of staggered
OFDMA symbols less than the

total number of OFDMA
symbols available?

Loop for
SC_skip,

incrementing
start_SC by 1

each time

NO YES

NO NO

NO
NO

NO
NO

YES YES

YES

YES

YES

YES

Convert each OFDMA symbol
in the frame to time-domain Tx
signal using IFFT. Apply CP,

RP and windowing using
standard method

OFDM_Tx

Correct for Network Gain

tx_CM

Loop for
Num_CM

Main loop

Figure 3.2: Transmitter Function Flow Diagram

45

Following basic error checking, Transmitter enters an OFDMA

“frame-component” generation loop that operates on a CM-by-CM basis. Here the term

“frame-component” refers to a portion of the total OFDMA frame (NFFT subcarrier by K

OFDMA symbols) that has been allocated to a specific CM, which translates to a unique

Tx signal vector when its IFFT is taken.

Upon entering this loop, Transmitter scans the frame structure variables for the trans-

mission mode of the current CM. Recall from Section 2.1 that there are three possible trans-

mission modes: traffic mode, fine ranging mode, or probing mode.

3.4.1 Traffic Mode

If the current CM is in traffic mode, Transmitter will begin constructing the CM’s cor-

responding OFDMA frame-component on a minislot-by-minislot basis. First, the sub-carrier

array (SC2k/SC4k) is scanned in order to determine whether a Body or Edge minislot is

present. The pilot array (Pilot2k/Pilot4k) is then scanned to determine the appropri-

ate pilot pattern for the minislot. Both pieces of information are fed to the sub-function

Pilot Pattern, which checks for errors and generates a 2-D array of the current minislot

with markers indicating the locations of pilot and complementary pilots. Following this, the

orders of the quadrature amplitude modulation (QAM) constellation for both regular data

and the complementary pilots in the minislot are obtained from the QAM-mapping array

(Mod2k/Mod4k).

The next stage in the traffic mode process involves obtaining the data sequence that

will be transmitted. Referring back to the problem statement in Section 1.4, it is assumed

that this data has been formatted into a serial stream of binary numbers. To simulate this,

Transmitter calculates the exact number of bits that can be sent in a single minislot

based on the pilot pattern and modulation orders for both regular data and complementary

pilots. MATLAB’s rand function is then used to generate a pseudo-random binary bit

sequence. Due to the high degree of complexity associated with generating minislot-specific

bit sequences, the user is not allowed to control the pseudo-random bit stream itself; however,

it can be viewed on a CM-by-CM basis by accessing the variable b orig CM.

46

Once the binary data sequence has been generated, Transmitter enters into a loop that

maps the sequence to the appropriate elements of the current 2-D minislot array. If the loop

index corresponds to a pilot marker, a BPSK-pilot symbol is placed accordingly. Otherwise,

the sub-function QAM Constellation is called to map the data and place either a regular

QAM symbol or a complementary pilot appropriately. QAM Constellation itself relies

on a recursive sub-function named ModSquare in order to map the data to the correct

symbol in a given QAM constellation. As was mentioned in Section 2.1.1, only square

constellations are considered for the purposes of this research; hence, ModSquare is only

capable of mapping BPSK, quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, 256-

QAM, 1024-QAM, and 4096-QAM. The mapping process is repeated until each element of

each 2-D minislot array in the OFDMA frame-component has been filled.

After all of the data has been mapped to each minislot, the completed frame-component

of the specified CM is passed to the sub-function OFDM Tx, which uses a loop environment

to convert each OFDMA symbol of the frame-component into a Tx signal vector. OFDM Tx

begins the conversion process by applying pre-equalization coefficients to each sub-carrier

(row) of the frame-component. Next, OFDM Tx uses MATLAB’s default ifft function

(modified in accordance with Equation 2.3) to obtain the IDFT of each OFDMA symbol. A

cyclic prefix and roll-off period are then added to each OFDMA symbol’s IDFT sequence.

Following this, OFDM Tx windows each OFDMA symbol using a Tukey raised-cosine (RC)

window. The result is the time domain signal for the specified CM, which is stored according

to its CM index in the cell array tx CM. Finally, if the attenuation is being corrected for,

Transmitter scales the Tx signal by the designated correctional factor.

3.4.2 Fine Ranging Mode

If the current CM is in fine ranging mode, Transmitter checks for errors in the setup

of the fine ranging and the guard band sub-carriers. Provided that the setup is valid,

Transmitter then proceeds to read a user-defined preamble sequence, which must be a

column vector of binary numbers. Should the length of the preamble not match the number

of fine ranging sub-carriers, Nfr, it will be either padded with zeros or truncated to length

47

Nfr. The preamble is then mapped using BPSK.

As was mentioned in Section 2.1.3.1, the preamble sequence of a fine ranging signal is

typically followed by several OFDMA symbols that contain QPSK-mapped data. Realisti-

cally, this data sequence would serve as a unique identifier for each individual CM; however,

since this model uses its own variables to identify CMs, it does not serve any functional

purpose. Nevertheless, it is unlikely that a preamble will ever be sent by itself; therefore,

in an effort to make the scenario as realistic as possible, an array of pseudo-random binary

numbers is generated using MATLAB’s rand function to be sent along with the preamble.

Once the preamble has been formatted and the data sequence has been generated,

Transmitter begins constructing the specified CM’s OFDMA frame-component. This

is done using a loop, in which both the BPSK-mapped preamble symbols and the QPSK-

mapped data sequence symbols are mapped to a 2-D minislot array. The completed frame-

component is then passed to OFDM Tx Ranging, which performs essentially the same tasks

as OFDM Tx. The difference between the two sub functions resides in the way that the time-

domain sequence is structured, which was covered in detail in Section 2.1.3.1. The resulting

time domain sequence is then stored and attenuated using the exact same method described

for traffic mode.

It is important to note that the DOCSIS 3.1 standard is somewhat ambiguous in regards

to how it structures the QPSK-mapped data sequence in the time domain; thus, for simplic-

ity’s sake, OFDM Tx Ranging was programmed so that every 2nd OFDMA symbol was a

copy of the symbol preceding it, and a new data sequence was generated every two symbols.

Similar to traffic mode, the length of the binary data sequence is exactly proportional to

the number of sub-carriers and symbols used; therefore, the user is not allowed to control it.

However, the sequence can be viewed by accessing the variable b orig CM.

48

Transmitter

Channel

Channel_Setup

Transmitter

Channel

Set Num_frames, Num_CM, and
Channel Variables

Declare new Frame Structure
Variables

Tx

Rx

Receiver

Impairment enables
and randomly

generated channel
offsets

Loop for
Num_frames

Main loop

Correct for offsets on next frame if
probing or ranging was performed

Recovered data
sequences, frame by

frame

main.m

Traffic ModeFine Ranging Mode Probing Mode

CM_mode Select

Correct for Network Gain

Body or Edge minislot

Generate random binary data
sequence to be transmitted

Format BPSK preamble

Generate random binary data
sequence to be transmitted

Generate pilot symbols

PRBS_LFSR

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing using standard

method

OFDM_Tx

Construct OFDMA frame for
current CM from probing-

specific variables and BPSK
pilot symbols

Probing

Construct OFDMA frame for
current CM from BPSK pilots

and QAM-mapped
complementary pilots and data

Construct OFDMA frame for
current CM from BPSK

preamble and QPSK data

Select appropriate pilot pattern

Pilot_Pattern

Map data using QPSK

ModSquare

QAM_Constellation

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing alternate ranging

method

OFDM_Tx_Ranging

Map data and complementary
pilots using appropriate QAM

constellation

ModSquare

QAM_Constellation

tx_CM

Loop for
Num_CM

Main loop

Baseband Carrier Phase Offset

Carrier Frequency Offset

Carrier Hum Modulation

AWGN

Loop for
Microref_num
(normally = 1)

Integer Timing Offset

Rx_Timing_Integer_Offset

Micro-reflections

Microreflection_Filter

Ingress Noise (AM/FM/Block)

Ingress

Loop for length
of Ingress input

vectors

Loop for
Num_CM

Main loop

Micro-reflection loop

Ingress Noise loop

rx

rx_CM

Probing

Is Stagger high?

Is start_SC <= SC_skip?

Was the previous
Sym_in_frame staggered?

Error! Invalid
Setup

Was the previous
Sym_in_frame staggered?

Is start_SC <= SC_skip?

Has the previous Sym_in_frame
already been written to?

Place the CM s pilot symbols
on the specified Sym_in_frame

in a non-staggered fashion
every SC_skip subcarriers,

beginning with start_SC Place the CM s pilot symbols
on the specified Sym_in_frame

in a staggered fashion every
SC_skip subcarriers, beginning

with start_SC

Are the number of staggered
OFDMA symbols less than the

total number of OFDMA
symbols available?

Loop for
SC_skip,

incrementing
start_SC by 1

each time

NO YES

NO NO

NO
NO

NO
NO

YES YES

YES

YES

YES

YES

Convert each OFDMA symbol
in the frame to time-domain Tx
signal using IFFT. Apply CP,

RP and windowing using
standard method

OFDM_Tx

Correct for Network Gain

tx_CM

Loop for
Num_CM

Main loop

Figure 3.3: Probing Sub-Function Flow Diagram

49

3.4.3 Probing Mode

If any CM in the current frame is in probing mode, then the entire frame is considered to

be a probing frame. This means that an invalid setup message will be produced if any other

CMs in the frame are in traffic or fine ranging mode. When a probing frame is detected,

Transmitter calls the function Probing to begin setting up the frame.

As with the other two transmission modes, the first process performed by

Probing is basic error checking, which encompasses all probing-specific variables listed in

Table A.3 in Appendix A. Once this has been completed, Probing enters the frame setup

loop. Within the loop are a sequence of nested “if” statements that are used to determine

the appropriate frame-component structure for a given CM and its probing-specific variables.

The flow of these “if” statements is depicted in Figure 3.3.

In each case, after a CM’s complete frame-component has been generated it is passed to

OFDMA Tx. Like the other two transmission modes, it is then converted to the time domain,

stored and attenuated.

3.5 Channel

Having used Transmitter to generate each CM’s OFDMA frame components and

convert them to Tx signals, the main loop then invokes the Channel function. By this

point, a large majority of the error checking has already been performed; thus, Channel is

able to go straight into its main loop and begin applying CM-specific offsets. The flow of

the Channel function is illustrated in Figure 3.4.

50

Transmitter

Channel

Channel_Setup

Transmitter

Channel

Set Num_frames, Num_CM, and
Channel Variables

Declare new Frame Structure
Variables

Tx

Rx

Receiver

Impairment enables
and randomly

generated channel
offsets

Loop for
Num_frames

Main loop

Correct for offsets on next frame if
probing or ranging was performed

Recovered data
sequences, frame by

frame

main.m

Traffic ModeFine Ranging Mode Probing Mode

CM_mode Select

Correct for Network Gain

Body or Edge minislot

Generate random binary data
sequence to be transmitted

Format BPSK preamble

Generate random binary data
sequence to be transmitted

Generate pilot symbols

PRBS_LFSR

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing using standard

method

OFDM_Tx

Construct OFDMA frame for
current CM from probing-

specific variables and BPSK
pilot symbols

Probing

Construct OFDMA frame for
current CM from BPSK pilots

and QAM-mapped
complementary pilots and data

Construct OFDMA frame for
current CM from BPSK

preamble and QPSK data

Select appropriate pilot pattern

Pilot_Pattern

Map data using QPSK

ModSquare

QAM_Constellation

Apply pre-equalization
coefficients. Convert each

OFDMA symbol in the frame to
time-domain Tx signal using

IFFT. Apply CP, RP and
windowing alternate ranging

method

OFDM_Tx_Ranging

Map data and complementary
pilots using appropriate QAM

constellation

ModSquare

QAM_Constellation

tx_CM

Loop for
Num_CM

Main loop

Baseband Carrier Phase Offset

Carrier Frequency Offset

Carrier Hum Modulation

AWGN

Loop for
Microref_num
(normally = 1)

Integer Timing Offset

Rx_Timing_Integer_Offset

Micro-reflections

Microreflection_Filter

Ingress Noise (AM/FM/Block)

Ingress

Loop for length
of Ingress input

vectors

Loop for
Num_CM

Main loop

Micro-reflection loop

Ingress Noise loop

rx

rx_CM

Probing

Is Stagger high?

Is start_SC <= SC_skip?

Was the previous
Sym_in_frame staggered?

Error! Invalid
Setup

Was the previous
Sym_in_frame staggered?

Is start_SC <= SC_skip?

Has the previous Sym_in_frame
already been written to?

Place the CM s pilot symbols
on the specified Sym_in_frame

in a non-staggered fashion
every SC_skip subcarriers,

beginning with start_SC Place the CM s pilot symbols
on the specified Sym_in_frame

in a staggered fashion every
SC_skip subcarriers, beginning

with start_SC

Are the number of staggered
OFDMA symbols less than the

total number of OFDMA
symbols available?

Loop for
SC_skip,

incrementing
start_SC by 1

each time

NO YES

NO NO

NO
NO

NO
NO

YES YES

YES

YES

YES

YES

Convert each OFDMA symbol
in the frame to time-domain Tx
signal using IFFT. Apply CP,

RP and windowing using
standard method

OFDM_Tx

Correct for Network Gain

tx_CM

Loop for
Num_CM

Main loop

Figure 3.4: Channel Function Flow Diagram

51

3.5.1 Integer Timing Offset

The first offset applied by the channel is the integer timing offset, which is accomplished

using sub-function Rx Integer Timing Offset. This sub-function works by concate-

nating the last NRP samples of the previous frame’s individual CM-specific Tx signals with

the first NRP samples of the current frame’s individual CM-specific Tx signals. The sub-

function then delays each of the concatenated Tx signals by an integer amount according

to its CM-specific integer timing offset, the values of which were generated previously using

Channel Setup. In MATLAB, delaying a specific CM’s Tx signal by the integer timing

offset is the equivalent of inserting an additional θ samples of the previous frame’s Tx signal.

The resulting offset Tx signals output by the function are referred to as Rx signals, as they

have begun passing through the channel.

Although this process is simple to implement in theory, the fact that the vectors are

different lengths makes it difficult to process them in a loop environment.

Rx Integer Timing Offset was therefore designed so that the size of all Rx output

vectors are relative to the vector with the largest timing offset. This is accomplished by

appending all smaller vectors with extra elements until all vectors are of uniform length. For

example, if the largest integer timing offset is θ1 = 100, and a smaller offset is θ2 = 90, 10

additional zero-valued elements are appended to θ2.

Note that when simulating the first frame in any transmission burst in MATLAB, there

is no “previous frame” to concatenate it with. This means that the first θ+NRP samples of

the first frame are inherently unknown, which presents a challenge when trying to model a

system that is transmitting in steady state. To address this, the variable Frame tag mode

was added to the model. Frame tag mode allows the user to choose one of two types of

data sequences that may precede a CM’s Tx signal in the first frame of a transmission burst:

• Frame tag mode = 0 : Fill the additional θ vector elements at the beginning of the

current frame with zeros.

• Frame tag mode = 1 : Concatenate the beginning of the first frame with a duplicate

52

of the last θ +NRP samples of the first frame.

It is recommended that the user choose the second option, as filling the additional elements

with values is more representative of a steady-state burst.

3.5.2 Micro-reflections

Once the signal has been time-delayed by an integer amount, Channel begins to generate

micro-reflections for each CM’s Rx signal vector. Although the DOCSIS 3.1 standard spec-

ifies only a single micro-reflection (as was discussed in Section 2.2.2.2), a design choice was

made to give the simulation the ability to generate multiple micro-reflections (up to a maxi-

mum of 6, one for each category in Table 2.1), should the user desire to explore their effects.

This is accomplished through the use of the sub-function Microreflection Filter.

Microreflection Filter works by first separating the total echo time (transport

delay) of each micro-reflection into integer and fractional components. Next, it enters a loop

where it generates a unique set of coefficients for a finite impulse response (FIR) fractional

delay filter (FDF) based on the fractional delay value obtained from the previous step. The

design of this filter is the subject of Chapter 4.

Once the coefficients have been generated, the Rx signal vector is filtered using MAT-

LAB’s built-in filter function. Following filtering, the fractionally delayed output se-

quence is truncated to match the original signal length. A complex attenuation correspond-

ing to the current micro-reflection is then obtained from Channel Setup and applied to

the truncated signal.

Recall from Equation 2.20 that the complex attenuation, denoted as αp, contains both a

scaling factor and a phase shift. The scaling factor, Ap (in dBc), is obtained from Table 2.1,

which is stored as a look-up-table (LUT) in Channel Setup. The phase shift is modelled

as a pseudo-random variable between −π and π radians.

After the complex attenuation has been applied, the micro-reflection vector is shifted by

the integer delay component and added back to the original Rx signal vector, thus simulating

a micro-reflection. Since shifting the micro-reflection vector by an integer amount extends it

53

beyond the length of the frame, the extra samples at the end of the frame are truncated and

stored in a new vector called rx CM microref tail prev. This vector will be added to

the beginning of the next frame in order to simulate continuous transmission.

There is a slight drawback associated with simulating the micro-reflections using the

method described above. When a signal is first passed through a digital filter, the filter must

undergo a transition period before it able to produce a steady-state output. For an FIR

filter, the length of this transition period is equal to the filter order, N − 1. The outputs

produced during this period are referred to as transient samples, or “transients”. If the input

signal is continuous, the first N − 1 samples will be transients; however, since the MATLAB

simulation operates on a frame-by-frame basis, there are inherently a fixed number of samples

available for the filter to process. Hence, the filter will undergo another transition period at

the end of the frame, resulting in another N − 1 transient samples.

In order to eliminate the transients, the last N − 1 samples of the previous frame and

first N − 1 samples of the following frame (omitting the integer timing offset and roll-off

samples) should be appended to the beginning and end of the current frame, respectively,

prior to filtering. These additional samples could then be truncated, thus producing a

fractionally delayed frame whose length matches that of the input frame. However, as

mentioned previously, the simulation cannot generate data from “future” frames; only data

from the current and previous frame may be used. Therefore, no matter what is done, the

first N − 1 samples of any filtered frame will always be transient samples.

At this point, it is important to note that within the transient samples themselves, the

first (N − 1)/2 samples output by the filter are not considered to be valid data, while the

subsequent (N − 1)/2 samples are considered to be valid, but distorted. Similarly, the last

(N − 1)/2 output samples are invalid, while the (N − 1)/2 samples that precede them are

valid, but distorted. In other words, the filter has a delay of (N − 1)/2 samples before valid

data can be output.

With this information in mind, a choice was made to approximate an ideal micro-reflection

by truncating the first and last (N − 1)/2 invalid samples of the FIR FDF’s output. The

54

NCP

NCPτ1 - NRP

NFFT

NFFT

NCP

Last (N-1)/2
 valid samples

of previous frame

NRP

NRP

NRP

NRP

Main-Path Signal

Micro-reflection

 Valid Steady-
Sate Filter Output

First (N-1)/2
 valid samples
of current frame

First (N-1)/2
 valid samples
of next frame

Last (N-1)/2
 valid samples
of current frame

First (N-1)/2 samples,
non-steady-state,

 invalid

Steady-State Output Last (N-1)/2 samples,
non-steady-state,

 invalid

Total Filter Output

 Valid Steady-State Output

First (N-1)/2 samples,
steady-state,

 valid but distorted

Last (N-1)/2 samples,
steady-state,

 valid but distorted

Figure 3.5: Distorted Filter Output Caused by Using Frames of a Finite Length to

Simulate Micro-reflections

first and last (N − 1)/2 of the resulting output frame are therefore distorted, yet valid, as

Figure 3.5 illustrates.

The drawback associated with this approximation occurs after

Microreflection Filter has finished generating and adding the current CM’s micro-

reflection vector(s) to its Rx signal vector. Once this procedure has been completed, Channel

enters into another loop where the tail-end of each of the previous frame’s micro-reflection

vector(s) is added to the beginning of the current frame. Thus, at any given time, there will

be N − 1 distorted samples present in the micro-reflections, as depicted in Figure 3.51. If

1Note that Figure 3.5 depicts only a single OFDMA symbol in the given frame, while in reality the frame

would contain K OFDMA symbols.

55

these distorted samples lie within the original frame’s cyclic prefix, then their effect on the

received signal is negligible, as the cable modem termination system (CMTS) will remove

the cyclic prefix samples. However, if the combination of τ1, NRP , and NCP causes some

of these samples to occur outside the cyclic prefix, as Figure 3.5 illustrates, the distorted

samples will affect the received signal in an minor, yet undesirable, fashion.

3.5.3 Carrier Phase and Frequency Offsets and Network Gain

The final three CM-specific impairments that must be applied are the carrier phase offset

(CPO), the carrier frequency offset (CFO), and the network gain/attenuation, the values of

which are pseudo-randomly generated in Channel Setup and stored respectively in the

variables

Phase offset, Freq offset, and Pwr offset. The value of Phase offset can

range anywhere from −π to π radians. Typically, the value of Freq offset would be

from -0.5 to 0.5 samples, which translates to between ±25 kHz based on the minimum sub-

carrier spacing of 50 kHz in 2k transmission mode, or ±12.5 kHz based on the minimum

subcarrier spacing of 25 kHz in 4k mode. However, due to the strict frequency synchro-

nization requirements imposed by DOCSIS 3.1, it was decided that a range of ε should be

reduced to −0.01 ≤ ε ≤ 0.01 samples with a resolution of 10−3 samples. As mentioned in

Section 2.2.2.4, the value of Pwr offset was selected to range from -9 dB to +3 dB.

To apply the CPO and CFO, Phase offset and Freq offset are first substituted for

ε and φ, respectively, in the complex exponential of Equation 2.27. This complex exponential

is then implemented directly in MATLAB as a vector. Note that while the CPO remains the

same throughout the vector, the CFO is dependent upon the vector index and will change as

the index increases. Finally, each element of the complex exponential vector is multiplied by

the element of the Rx signal vector that corresponds to its index (i.e. “ .* ” multiplication

in MATLAB).

The network gain/attenuation is applied simply by converting Pwr value to an ampli-

tude multiplying the Rx signal vector by the result.

Following the application of these three impairments, the current CM’s Rx signal is added

56

to the combined total of all Rx signals. Channel then loops back and applies new CM-

specific impairments to the remaining CMs until the Rx signals of all transmitting CMs have

been combined.

3.5.4 Carrier Hum Modulation

Hum modulation is a common impairment. The MATLAB function Channel imple-

ments carrier hum modulation by first determining a starting and ending sample indices

for the carrier hum waveform. The starting index is calculated by subtracting the current

value of the integer timing offset from the ending index of the previous frame. The ending

index is the starting index plus the current frame length. Keeping track of the indices in

such a fashion allows the signal to retain continuity across multiple frames, thus accurately

modelling a burst transmission scenario.

Once the indices have been determined, the carrier hum waveform is generated. As dis-

cussed in Section 2.2.3.1, this waveform has a trapezoidal shape, which can be approximated

using a sinusoid with a clipped amplitude. In MATLAB, the waveform is created by first

determining the maximum amplitude that the sinusoid can take on after a user-specified

transition period (recommended 250 ms). Next, the full sinusoid is generated according to

a user-specified frequency (recommended 60 Hz) and phase shift. Any values exceeding the

previously established amplitude threshold are then clipped, and the final waveform is scaled

according the user-specified carrier hum attenuation factor in dBc. Finally, the carrier hum

waveform is amplitude modulated onto the combined Rx signal, as depicted in Equation 2.31.

A single cycle of the scaled waveform is provided in Figure 3.6 for verification purposes.

3.5.5 Ingress Noise

Ingress noise is another common channel impairment. Similar to carrier hum modula-

tion, the first step involved in generating an ingress noise signal is determining its sample

indices. Following this step, Channel enters a loop that repeatedly calls on the sub-function

Ingress to generate any number of ingress noise signals.

Each time Ingress is called, it can generate one of three different types of ingress noise

57

0 2 4 6 8 10 12 14 16 18

x 105

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
60 Hz Carrier Hum Waveform, Fs = 102.4 MHz

Samples

Am
pl

itu
de

Figure 3.6: 60 Hz Carrier Hum Waveform, Fs = 102.4 MHz

signals: AM, FM, or “block.” The “block” ingress noise option is a feature that was carried

over from an early version of the Ingress function. When “block” is selected, Ingress

generates blocks of ingress noise at frequencies on either side of a centre carrier frequency

that are equally spaced across a specified bandwidth. The phases of the frequencies are

pseudo-randomly generated by Channel Setup and stored in the first row of the variable

Ingress sin setup, while their uniform amplitude is set by the user (in dBc, relative to

the main carrier frequency, assumed to be of unity gain). The block ingress can be useful

in certain instances where the user wants to test the effects of ingress noise over a narrow,

precise bandwidth.

Ingress generates AM or FM ingress noise signals by first generating a message signal.

The phases, frequencies and amplitudes of each sinusoid in a given message signal are all

pseudo-randomly generated by Channel Setup and stored respectively along the rows

58

of the array Ingress sin setup, which is then passed to Ingress. Ingress then

generates each sinusoid in the message signal and adds it to the previous sinusoid in a loop

environment.

Once the message signal has been generated, Ingress generates a carrier, the fre-

quency (Hz), amplitude (dBc), and phase (rads) of which are controlled by the user. Next,

Ingress amplitude or frequency modulates the user-specified carrier frequency using either

Equation 2.34 or Equations 2.36, respectively. Note that in the case of an FM ingress noise

signal, the integration is completed by taking the cumulative sum of the message signal, as

depicted in Equation 2.37. The MATLAB function cumsum is used to accomplished this.

The output of Ingress is a time-domain vector of ingress noise that is the same length

as the combined Rx signal vector. An estimate of the ingress power is also provided by

taking the variance of the output signal. After all of the specified ingress noise signals have

been generated, they are added to the combined Rx signal. Similarly, the estimated power

values are added together, and an approximate total ingress power value is provided in dBc.

3.5.6 Additive White Gaussian Noise

The final common impairment imposed upon the system is additive white Gaussian noise

(AWGN), the real and imaginary components of which are generated using MATLAB’s

pseudo-random Gaussian number generator function, randi. Once a noise vector that

matches the length of the combined Rx signal has been generated, it is then normalized

using the variance calculated from Equation 2.39. The user is able to set the carrier-to-noise

ratio (CNR) in the aforementioned equation using the variable CNIR.

After the noise vector has been added to the combined Rx signal, Channel performs one

last calculation, which is estimating the carrier-to-noise-and-interference ratio, plus ingress.

This is done using the following equation:

CNIR plus ingress dB = 10 log10

PC
PN + PI

(3.1)

where PC is the carrier power (which is assumed to be unity), PN is the power in the noise

vector (calculated by taking its variance), and PI is the ingress noise power (previously

59

obtained from the Ingress function).

Should the value of this combined ratio fall below 25 dB, a warning message will be

displayed, as the DOCSIS 3.1 standard specifies a CNIR, plus ingress, value of no less than

25 dB. If this occurs, it is recommended that the user adjust either the CNR or the ingress

noise generation parameters accordingly.

Finally, the combined Rx signal with all of its impairments is sent back to the main

function where it can be passed to a receiver function, which is not implemented in this

study, in order to be decoded.

3.6 Verification

The verification processes followed throughout the design of the MATLAB model can be

broken down into two main categories: transmitter and channel verification. As their names

imply, these verification categories encompass the functions Transmitter and Channel,

as well as their respective associated sub-functions.

3.6.1 Transmitter Verification

To perform transmitter verification, two additional functions were created. The first

was a pseudo-random test case generator named Test Random Setup Full, which was

capable of assigning any combination of frame generation variables to a frame in traffic,

fine ranging or probing mode. This function was written collaboratively with University of

Saskatchewan master’s student Chad Holst. The second function was a receiver function,

appropriately titled Receiver, which is capable of decoding any transmitted sequence ob-

tained using Test Random Setup Full. This was written by Chad Holst and Yayi Xiao,

another master’s student at the University of Saskatchewan. Both functions were developed

in tandem with Transmitter so that verification could be performed progressively as more

features and sub-functions were added.

The use of MATLAB’s visual interface greatly assisted in the verification process for all

functions designed for use in the MATLAB model. In most cases, visual comparisons of

60

arrays and variables present in the MATLAB workspace were enough to validate certain fea-

tures. To assist with this visual verification process, several intermediate debugging variables

were included in Transmitter, which can be found in Table A.8 in Appendix A.

The ultimate verification test for the transmitter and its associated functions was de-

termining the bit-error-ratio (BER) between the transmitted and received bit sequences of

each CM with no channel impairments present. The received bit sequence of each CM was

decoded using Receiver. The BER of each CM was calculated as follows:

BER CM =
1

Nb

Nb∑
i=1

|b orig CM[i]− b rec CM[i]| (3.2)

where Nb is the total number of bits transmitted, b orig CM is the original transmitted

binary bit sequence, and b rec CM is the received bit sequence. A BER of zero for all CMs

in any test-case scenario indicated that the transmitter was functioning correctly.

3.6.2 Channel Verification

In terms of CM-specific channel impairments, the integer timing offset was verified visu-

ally in the MATLAB workspace by checking to see if the correct number of array elements

had been inserted in the appropriate place in a CM’s Tx vector.

The fractional timing offset was verified by comparing the magnitudes of two identical,

randomly generated Rx signal vectors that were each fractionally delayed by the same ran-

domly generated amount using a different method. The first Rx signal vector was obtained

through the use of pre-equalization coefficients (generated using Equation 2.18) in the trans-

mitter. The second Rx signal vector was obtained through the use of a FDF in the channel.

Specifically, main-path FDF Design #2, which is discussed in Chapter 4, was used; however,

the quality of the filter was not relevant to this particular verification process. The first

200 samples of each Rx signal’s magnitude were plotted in Figure 3.7. Overlapping signals

indicate a correct implementation, ignoring the error introduced by the FDF itself.

Micro-reflections were verified using a similar technique to the one described above. A

micro-reflection with a random echo time and corresponding complex attenuation was gen-

erated using two different methods. The first method involved the use of pre-equalization

61

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

Fractional Timing Offset: Pre−Equalization Coefficients vs.
Fractional Delay Filter, ∆ = 0.5 samples

Sample Index, n

M
ag

ni
tu

de
 o

f R
x

Si
gn

al

Pre−Equalization
Frac. Delay Filter

Figure 3.7: Fractional Timing Offset Verification: Pre-Equalization Coefficient Simulation

Method vs. Fractional Delay Filter Simulation Method, ∆ = 0.5 samples

coefficients in the transmitter, which were calculated using Equation 2.22. The second

method involved the use of a secondary channel path and its corresponding integer offset,

FDF (secondary-path Design #2 in Chapter 4), and attenuation, all of which were encom-

passed in the function Microreflection Filter. The micro-reflections obtained using

each method were added to two identical, randomly generated Rx vectors, respectively. The

magnitudes of the first 200 samples of these vectors were then compared, as illustrated in

Figure 3.8. Once again, overlapping signals indicate a correct implementation, ignoring the

error introduced by the FDF itself.

Note that in the scenario illustrated Figure 3.8, the length of the cyclic prefix is NCP = 96

samples. Although it may be difficult to discern given the resolution of Figure 3.8, there is

62

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Micro−reflections: Pre−Equalization Coefficients vs. Fractional Delay Filter

Sample Index, n

M
ag

ni
tu

de
 o

f R
x

Si
gn

al

Pre−Equalization
Frac. Delay Filter
NCP Samples

Figure 3.8: Micro-Reflection Verification: Pre-equalization Coefficient Simulation Method

vs. Fractional Delay Filter Simulation Method

more error present in the first NCP samples of the Rx signal magnitude compared to the rest.

Recall from Section 2.2.2.2 that this discrepancy is expected, as simulating micro-reflections

using pre-equalization coefficients results in signal discontinuities in the cyclic prefix.

The MATLAB implementations of the CPO, the CFO, and network gain/attenuation

were carefully built to match their mathematical representations exactly; thus, no further

verification was deemed necessary.

In terms of common channel impairments, Figure 3.6 and 3.9 demonstrates that the

carrier hum waveform behaves as expected.

To verify the functionality of Ingress, a test-case scenario involving all three ingress

63

noise types was created. The input parameters used to generate each ingress noise type are

provided in Table 3.1. AWGN with an arbitrarily chosen CNR of 60 dB was also added to

the test-case.

An estimated power spectral density (PSD) plot of the test-case’s spectrum (with AWGN

present) is provided in Figure 3.9. The plot was obtained using MATLAB’s dspdata.psd.

Note that by default MATLAB plots two-sided power spectra from 0 to Fs instead of from

−Fs/2 to Fs/2. Thus, ingress noise signals that occur in the range −Fs/2 to 0 are wrapped

so that they appear in the range Fs/2 to Fs. From Figure 3.9, it can be seen that each

ingress noise type appears on the PSD at its specified carrier frequency given in Table 3.1.

Finally, AWGN functionality was verified by implementing Equation 3.1 directly in MAT-

LAB and setting PC = 1, PI = 0, and PN equal to the variance of a pseudo-randomly

generated noise vector with an arbitrarily chosen CNR. The resulting CNR of the equation

matched the arbitrarily chosen CNR in all cases.

Table 3.1: Properties of Ingress Noise Types Depicted in Figure 3.9

Block AM FM
Ingress_carrier_freq Carrier frequency -44 MHz -20 MHz -30 MHz
Ingress_carrier_phase Carrier phase π/4 π/4 π/4
Ingress_BW Bandwidth 200 kHz 10 kHz 200 kHz
Ingress_freq_spacing Frequency spacing (Block Only) 10 kHz N/A N/A
Ingress_FM_freqdev Peak frequency deviation (FM

only)
N/A N/A 75 kHz

Ingress_num_message_sig Number of sinusoids in a message
signal (AM & FM only)

N/A 100 100

Ingress_atten_dBc Carrier attenuation in dBc
(relative to "unity gain" OFDMA
carrier)

-40 -40 -40

Variable Description Value

64

FM
(Fc = 30 MHz)

Block
(Fc = -44 MHz)

AM
(Fc = -20 MHz)

FM
(Fc = 30 MHz)

Block
(Fc = -44 MHz)

AM
(Fc = -20 MHz)

Figure 3.9: Ingress Noise Power Spectral Density Example

65

4. Fractional Delay Filter Design

This chapter advances a topic broached in Chapter 2. Chapter 2 laid the theoretical

framework for fractional timing offsets and micro-reflections. It was mentioned that either

pre-equalization coefficients or fractional delay filters (FDFs) could be used to simulate both

impairments. It was stated without reason that pre-equalization coefficients were the method

best suited for simulating the main-path fractional timing offset. It was also stated that a

secondary path with an FDF was the better choice for simulating micro-reflections.

The purpose of this chapter is to explain these decisions by exploring the FDF design

process that was used during this research. The chapter begins with a discussion of general

FDF theory. Following this, two FDF design methods are presented, and a metric for com-

paring their performances is established. Next, techniques for implementing filter structures

efficiently on a field programmable gate array (FPGA) are described in detail. The FDF

designs themselves and their performance metrics are then evaluated. Finally, a cost analysis

in an FPGA implementation is done. The cost metrics are number of multipliers and bytes

of memory.

4.1 General Fractional Delay Filter Theory

To begin the discussion surrounding the FDF design process, the basic theory of FDFs is

first explained. A fractional delay filter (FDF) is a digital filter whose purpose is to delay a

signal by a fraction of a sampling period. In this research, the fractional delay is considered

to be the fractional portion of the transport delay in units samples of either the main or

secondary channel paths. An ideal FDF would therefore have an impulse response identical

66

to that of Equation 2.6, and thus a frequency response of:

Hideal(e
jω) = e−j∆ω (4.1)

where ∆ is the fractional delay which can range between −0.5 ≤ ∆ ≤ 0.5 samples.

Since the function of the filter is to introduce a pure delay, the ideal magnitude response

is:

|Hideal(e
jω)| = 1, −π ≤ ω ≤ π (4.2)

and the ideal phase response is:

∠Hideal(e
jω) = −∆ω, −π ≤ ω ≤ π (4.3)

In other words, an ideal FDF will have an all-pass magnitude response, as well as a linear

phase response with a slope equal to the negative of the fractional delay [29].

The impulse response of the ideal filter is obtained by taking the inverse discrete-time

Fourier transform of the frequency response, which results in the discrete-time sinc function:

hideal[n,∆] =
sin(π(n−∆))

π(n−∆)
= sinc(n−∆), −∞ < n <∞ (4.4)

In general, the impulse response has infinite length and is non-causal. Visual representations

of the impulse response, which is also the coefficients of finite impulse response (FIR) filter

implementations, are provided in Figure 4.1. The top and bottom plots of the figure show

the impulse responses for fractional delays of ∆ = 0 and ∆ = 0.25 samples, respectively.

It is clear from Figure 4.1 that delaying the signal by a fraction of a sample results in

an infinite number of non-zero coefficients, some of which are at n < 0. This means that

the ideal filter is non-causal, and thus non-realizable (i.e. unable to operate in real-time).

A realizable FDF must have a finite-length, causal impulse response. One approach to

obtaining such a response is to approximate the ideal response. The approximation should

be made using a method that in some way minimizes the following error function:

E(ejω) = HFD(ejω)−Hideal(e
jω)e−jω

N−1
2 (4.5)

where HFD(ejω) is the frequency response of the finite-length, causal FDF; N is the length

of the FDF; and e−jω
N−1

2 accounts for a delay that places the majority of the energy in the

67

Δ

Figure 4.1: Ideal FDF Impulse Response

sinc function in the interval 0 ≤ n ≤ N − 1 [29] [30]. The best approximation is one that

minimizes Equation 4.5 using the fewest resources possible. The most important resources

in an FPGA are multipliers and bytes of memory.

According to Laakso et. al. [31], there are numerous techniques that can be used to

accomplish this objective, each of which minimizes the error function in a different way.

The techniques can be divided into two main categories: finite impulse response (FIR),

infinite impulse response (IIR). However, since the impulse response of an IIR filter may

potentially extend beyond the cyclic prefix and interfere with the data of an orthogonal

frequency-division multiple access (OFDMA) frame, only FIR filter designs are considered

in this research.

Two FIR design methods were selected for evaluation: the windowing method, and the

maximally-flat method, both of which are non-iterative and have closed form solutions [31].

Derivations of both techniques are provided in the following section.

68

4.2 Design Methods

4.2.1 Windowing Method

The windowing method of designing an FIR FDF is straightforward. To understand the

basic concepts of windowing, a least squared error approach is often taken [29] [30] [31],

which requires modifying Equation 4.5 to become:

ELS =
1

π

∫ π

0

|HFD(ejω)−Hideal(e
jω)e−jω

N−1
2 |2dω (4.6)

The simplest way to minimize the least squared error is by truncating the delayed sinc

function such that:

hFD[n,∆] =

sinc(n− (N−1)
2
−∆) n = 0, 1, ..., N − 1

0 otherwise

(4.7)

The sinc function has been delayed by (N −1)/2 so that most of the energy in the truncated

sinc function lies within the interval 0 ≤ n ≤ N − 1.

A side effect of the truncation process is the introduction of passband ripple in the

frequency domain [32]. Depending on the filter’s performance metric, it may be desirable to

mitigate the passband ripple. This can be accomplished by applying discrete-time window

function, w[n,∆], to the truncated sinc function such that:

hFD[n,∆] =

sinc(n− (N−1)
2
−∆)w[n,∆] n = 0, 1, ..., N − 1

0 otherwise

(4.8)

This windowing process effectively tapers the truncated sinc function in the time domain,

which translates to a smoother passband and a wider transition band in the frequency

domain. Consequently, the least squared error will also be increased; however, this is not

necessarily a drawback depending on the portion of the passband over which the performance

is measured.

The degree to which the truncated sinc function is tapered depends on the type of window

used. Five types of windows are explored in this research. The first four are the Rectangular,

69

Hanning, Hamming, and Blackman windows. Their respective equations are provided in [32]

and listed below:

Rectangular

w[n,∆] =

1 n = 0, 1, ..., N − 1

0 otherwise

(4.9)

Hanning

w[n,∆] =

0.5

(
1− cos

(
2π(n− (N−1)

2
−∆)

N−1

))
n = 0, 1, ..., N − 1

0 otherwise

(4.10)

Hamming

w[n,∆] =

0.54 + 0.46 cos

(
2π(n− (N−1)

2
−∆)

N−1

)
n = 0, 1, ..., N − 1

0 otherwise

(4.11)

Blackman

w[n,∆] =

0.42− 0.5 cos

(
2π(n− (N−1)

2
−∆)

N−1

)
+ ...

0.08 cos

(
4π(n− (N−1)

2
−∆)

N−1

)
n = 0, 1, ..., N − 1

0 otherwise

(4.12)

It is important to note that applying a Rectangular window to the sinc function is the

same as truncating it, which, as previously stated, results in more passband ripple than the

other windows. Thus, using a Rectangular window is generally not considered acceptable in

practice [29] [31], and its inclusion in this thesis is purely for reference.

Aside from the fractional delay parameter ∆, the Rectangular, Hanning, Hamming, and

Blackman windows have only a single adjustable parameter, which is their length, N . This

makes them somewhat limited from a design standpoint; however, they are simple to com-

pute, making them easily implementable in a practical setting.

70

The fifth type of window explored is the Kaiser window, also given by [32] as:

Kaiser

w[n,∆] =

I0

(
β

√
1−(

2(n− (N−1)
2 −∆)

N−1
−1)2

)
I0(β)

n = 0, 1, ..., N − 1

0 otherwise

(4.13)

where I0(·) refers to a Bessel function of the first kind.

The Kaiser window is more versatile than the other four windows as it has an additional

adjustable parameter, β, which controls the shape of the window. In fact, by selecting an

appropriate β value, the Kaiser window can approximately model all four of the previously

mentioned window types (with β = 0 corresponding to a Rectangular window). The trade-

off is computational complexity of the coefficients due to their dependency on the Bessel

function.

4.2.2 Maximally-Flat Method (Lagrange Interpolation)

Another way of minimizing the error function of Equation 4.5 is to make it

“maximally-flat” at frequency ω0 = 0. For an N -tap FIR filter, this can be achieved by

ensuring that the first N − 1 derivatives of E(ejω) are equal to zero at ω = 0 [29] [31] [33].

That is to say:
δnE(ejω)

δωn

∣∣∣
ω=0

= 0, n = 0, 1, 2, ..., N − 1 (4.14)

Performing N differentiations on the above equation produces a series of N linear equations.

According to [29], [31], and [33], these linear equations can be solved in terms of the filter’s

impulse response as follows:

hFD[n] =
N−1∏
k=0
k 6=n

N−1
2

+ ∆− k
n− k

, n = 0, 1, 2, ..., N − 1 (4.15)

which is equivalent to the classical Lagrange interpolation method given in Equation 4.16,

where y(xn) is the value of a sample at index xn. This means that each filter coefficient

71

hFD[n] is a Lagrange-basis polynomial pn(x) evaluated at x = (N − 1)/2 + ∆.

P (x) =
N−1∑
n=0

pn(x)y(xn)

pn(x) =
N−1∏
k=0
k 6=n

x− xk
xn − xk

(4.16)

Thus, filtering a set of uniformly spaced samples using a FIR FDF of length N that is

maximally-flat about ω = 0 is the same as interpolating the set of samples using a fitted

polynomial P (x) in the Lagrange form of order N − 1.

Similar to the windowed sinc filters mentioned above (excluding the Kaiser window),

the only adjustable parameter of maximally-flat filters is their length N . Thus, while being

limited from a design standpoint, their coefficients are also simple to compute, making them

easily implementable in practice.

4.3 Comparison Metric

Since both the windowing and maximally-flat methods minimize the error function of

Equation 4.5 in different ways, their standard performance criteria cannot be compared

against one another. Thus, to compare both methods, a universal performance metric must

be used instead. In order to determine which performance metric is best suited to this

research, several aspects of the data-over-cable service interface specification (DOCSIS) 3.1

standard are revisited.

First of all, the bandwidth of a DOCSIS 3.1 OFDMA signal at radio-frequency (RF) is

102.4 MHz. The first and last 3.7 MHz on either side of the channel are designated as guard

bands, meaning that the sub-carriers that lie within this range are excluded. This leaves

the signal with a usable bandwidth (passband) of 95 MHz, making it a wideband signal.

At baseband, this usable bandwidth is halved. Thus, from a filter design perspective, the

FDF should have a worst-case passband corner located at fp = 95/102.4/2 = 0.463867187

cycles/sample, and a worst-case transition band that spans from fp to 0.5.

Second, the minimum carrier-to-noise ratio (CNR) specified in the DOCSIS 3.1 standard

72

is 43 dB, which is required in order for a cable modem termination system (CMTS) to decode

4096-QAM [12]. To ensure that this CNR is achievable, the filters should be designed in

such a way that any “noise” they introduce to the system does not have a significant effect

on the overall CNR. Thus, the metric for determining a filter’s performance is considered to

be “filter noise”.

For the purposes of this research, “filter noise” is defined as the worst-case mean squared

error (MSE) in a filter’s passband, which occurs when the fractional delay ∆ = 0.5. Mathe-

matically, the worst-case MSE is given by:

MSEworst-case =
1

2π

∫ ωp

−ωp
|Sxx(ejω)||HFD(ejω,∆)−Hideal(e

jω,∆)e−jω
N−1

2 |2dω , ∆ = 0.5

(4.17)

where Sxx(e
jω) is the power spectral density (PSD) of the input signal, HFD(ejω,∆) and

Hideal(e
jω,∆) are the frequency responses of the respective designed and ideal filters, and

ωp = 2π(0.463867187) rads/sample is the passband corner frequency.

Strictly speaking, the power spectrum of the OFDMA signal in the analogue domain is

not representative of the actual signal due to the presence of the cyclic prefix. The power

spectrum of the actual signal is best represented as excerpts of this analogue signal that

ignore the cyclic prefix. The excerpts are interpreted as periodic signals consisting of pure

sinusoids, each of which is a subcarrier. Thus, the power spectrum of the actual signal is

given by:

|Sxx(ejω)| =
NFFT−m−1∑

n=m

2πδ

(
ω − 2πn

NFFT

)
(4.18)

where n represents the subcarrier index, NFFT is the total number of subcarriers in the

signal (2048 for 2k-mode, or 4096 for 4k-mode), and m represents the index of the first

usable subcarrier (74 for 2k-mode, or 148 for 4k-mode due to the predefined DOCSIS 3.1

spectral guardband).

Equation 4.17 can therefore be simplified to:

MSEworst-case =
1

M

NFFT−m−1∑
n=m

|HFD(e
j 2πn
NFFT ,∆)−Hideal(e

j 2πn
NFFT ,∆)e−jω

N−1
2 |2 ,∆ = 0.5

(4.19)

73

where M is the total number of subcarriers in the passband (1900 for 2k-mode, or 3800 for

4k-mode, again due to the guardband).

Based on the above definition, it was decided that the total worst-case MSE of any

combination of filters should not exceed 0.001 (i.e. -60 dB) in order to ensure that any

“filter noise” introduced into the system lies well below the minimum CNR of 43 dB. This

means that if multiple filters are used, each individual filter must be designed so their worst-

case MSEs are less than -60 dB. For example, if both a main-path and a secondary-path FDF

are used, they might be designed so that their individual worse-case MSEs are approximately

less than -63.1 dB, as 10 log10(2× 10
−63.1

10) = −60.1 dB ≤ −60 dB.

Note that micro-reflections are attenuated. Taking this attenuation into account al-

lows the MSE parameters to be relaxed when designing FDFs that model micro-reflections.

Specifically, the worse-case micro-reflection attenuation given in Table 2.1 is -16 dBc; thus,

the worst-case MSE of a secondary-path FDF must be less than -44 dB to ensure a total

worst-case MSE of -60 dB at its output. Also note that it is more practical to apply the

attenuation after the output of the secondary-path FDF so that any unnecessary headroom

can be removed at the filter input.

4.4 Single-Sampling-Rate Structures

One way of reducing the length of an FIR FDF is to “narrow” the bandwidth of the signal

prior to implementing the fractional delay and then “expand” it back its original bandwidth

after the signal has been fractionally delayed. This is a multirate signal processing tech-

nique. Since the error introduced by an FIR FDF designed using any of the aforementioned

techniques is largest near the end of its passband, reducing the size of the passband would

consequently reduce the passband MSE. Thus, a shorter-length filter that less-accurately

approximates an ideal FDF in the original passband could be used to meet the original MSE

criteria in the reduced passband. It will ultimately be shown that one of the most efficient

ways to implement this filter is to incorporate it into a multirate structure, which can then

be converted to a “single-sampling-rate structure” using “polyphase decomposition.”

74

4.4.1 Multirate Theory

The basic concept of a multirate FDF system is illustrated in Figure 4.2. It is convenient

to think of the system as having three stages, the first of which is interpolation. The purpose

of interpolation is to increase the sampling rate of the system and consequently “compress”

the spectrum of the input signal, thus allowing the FDF to operate with a smaller passband.

Interpolation is performed in two steps: upsampling, followed by low-pass filtering. The

upsampling is accomplished by “zero stuffing,” which inserts L − 1 zeros between samples,

with L being an integer value referred to as the “upsampling factor.” This is process is

represented by the first block of the interpolation circuit shown in Figure 4.2. Upsampling a

discrete-time signal x[n] through zero stuffing causes its spectral components to be replicated

as follows:

X<z>
u (ejω) =

L−1∑
r=0

1

L
Xu

(
ej(ω−

2πr
L

)
)

(4.20)

where Xu(e
jω) is the frequency response of the original upsampled signal with no images.

From this equation and its corresponding visual representation in Figure 4.3, it is clear that

these spectral images must be removed; hence, the signal is filtered by a low-pass filter, which

is denoted as HLPU(zL) in Figure 4.2.

In the second stage, the low-pass filtered, upsampled signal xu[k] is passed through the

FDF HFD(zL), where its samples are fractionally delayed by a factor of ∆.

The third and final stage of the multirate FDF system is decimation. Typically, decima-

tion involves filtering the upsampled, fractionally delayed signal with another low-pass filter

and then downsampling the result. However, if the low-pass filter used in the first stage is

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.2: Multirate System

75

H1(z)

z-(N-1)/2

H22(z)

H21(z)

z-(M-1)/2

H22(z)

H21(z)

z-(M-1)/2

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD1(z)

HFD2(z)

HFD3(z)

HFD4(z)

Fractional
Delay, Δ

x[n] [n+Δ]

 L HFD Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

 L HFDx[n]
xu

<z>[n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with zero stuffing

<z>

ω
ω0u

Xu(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

H1(z)

z-(N-1)/2

x[n] u[n]

H1(z)

z-(N-1)/2

x[n]
x1[n]

x0[n]

x0[n]

x1[n]

v0[n]

v1[n]

v2[n]

v3[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n]

β1[n]

β2[n]

β3[n]

u0[n]

u1[n]

Figure 4.3: Upsampled Spectrum

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.4: Downsampling

designed well enough, no spectral images will be present. This makes HLPD(zL) redundant

and unnecessary so it can be eliminated; thus, downsampling is the only operation that must

be performed during decimation.

Unfortunately, implementing a system in such a fashion has several disadvantages. First

of all, HLPU(zL) and HFD(zL) run at a rate of Fsu = LFs, which means they perform L-times

more multiplications per second than a filter that operates at the original input rate of Fs.

However, when the signal is downsampled, only every Lth sample is kept, as depicted in

Figure 4.4; the remaining samples are simply discarded, which makes the system extremely

inefficient where multiplication is concerned.

Additionally, it was mentioned in the problem statement that it may be desirable to

76

implement the MATLAB simulation on an FPGA in the near future. As it stands, the

MATLAB simulation does not operate in real-time. Assuming that the FPGA implementa-

tion also does not operate in real-time, the rate at which the simulation runs on an FPGA

(i.e. the FPGA’s clock rate, Fclk) can be selected somewhat arbitrarily. Fclk must be set

such that the highest sampling rate used by any component of the simulation is less than

the FPGA’s maximum clock rate, denoted as Fmax. Since the stages of a multirate filter

system operate at multiples of the sampling frequency, implementing a multirate structure

on an FPGA can potentially be a limiting factor where processing speed is concerned.

To avoid multiplication inefficiencies and ensure that processing speed is not a limit-

ing factor, a multirate structure can sometimes be converted into a single-sampling-rate

structure. This typically involves breaking the filters of the multirate structure into smaller

“sub-filters” through polyphase decomposition, the basic concepts of which will be discussed

in the following subsection. Ultimately, it will be shown that by rearranging the upsamplers

and downsamplers appropriately, each sub-filter can be made to run at a single sampling

rate defined at the structure’s input.

4.4.2 Polyphase Decomposition

Polyphase decomposition can be used to implement multirate filter structures more ef-

ficiently by reducing the number of multiplications per output sample of a filter. Consider

first the interpolation stage of the multirate FDF system shown in Figure 4.2. The first step

involved in polyphase decomposition is breaking the low-pass filter down into a number of

smaller “sub-filters,” the exact number of which corresponds to the upsampling factor, L.

For FIR filters, each sub-filter processes the data associated with a “phase” of the output.

The filter for phase “P” is obtained by using a starting index which must be between 0 and

L − 1 inclusive and then selecting every Lth coefficient from the original filter. Typically,

the filters are then placed in parallel with one another. An integer delay is then inserted

between each filter, thus forming the polyphase structure shown in Figure 4.5a. According

77

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.5: Inefficient (a) vs. Efficient (b) Structures for Performing Interpolation

to [34], this FIR polyphase structure can be expressed mathematically as:

H(z) =
L−1∑
l=0

z−lHl(z
L) =

L−1∑
l=0

∞∑
n=−∞

h[Ln+ l]z−(Ln+l) (4.21)

where l is the index of each sub-filter.

Note that all sub-filters must have the same delay in order to ensure that their samples

arrive at the output at the correct time. Thus, the outputs of any sub-filters that are shorter

than the longest polyphase filter must be padded with integer delays until their total delay

matches that of the longest sub-filter.

Each sub-filter runs at a rate of Fsu = LFs. Since upsampling with zero stuffing occurs

before filtering, it is inevitable that some filters will perform wasteful multiplication on the

zero-valued samples. However, using a noble identity [35] which states that an upsampler

followed by a system function that is a function of zL, i.e. H(zL), is equivalent to system

function H(z) followed by an upsampler, the upsampler can be shifted to the other side of

the sub-filters as shown in Figure 4.5b. The filters can now run at the original input rate

of Fs. This reduces the number of multiplies required to produce each output sample by a

factor of L, thus making the system L-times more efficient.

In a similar fashion, polyphase decomposition can be performed on the fractional delay

and decimation stages of Figure 4.2. Here, the polyphase filter has “M” phases corresponding

to the downsampling factor M , which in this case is equal to the upsampling factor L. Recall

78

that the low-pass filter HLPD(zL) is redundant and can be eliminated. Breaking HFD(zL)

into L sub-filters and inserting delay zP between the filter input and the input of phase P

produces the polyphase structure shown in Figure 4.6a.

Once again, the filters operate at a rate of Fsu = LFs. Since only every Lth sample

is retained by the downsampler, each filter is performing L − 1 wasteful multiplications.

Shifting the downsampler to the other side of the sub-filters as shown in Figure 4.6b allows

them to operate at the desired output rate of Fs, which again improves the multiplication

efficiency of the structure by a factor of L. The end result is the fractionally delayed output

signal, y[n].

At this point, two key structures have been established: the interpolation structure of

Figure 4.5b and the fractional delay/decimation structure of Figure 4.6b. By conceptually

placing these structures side-by-side, it is clear that the upsamplers and downsamplers along

each path will effectively cancel each other out. Thus, the single-sampling-rate structure of

Figure 4.7 can be obtained.

The challenge now is to design a FIR low-pass filter HLPU(zL) and a FIR FDF HFD(zL)

that, when implemented in the aforementioned single-sampling-rate structure, will use less

computational resources than standard FDF. Additionally, the structure must be designed

so that it is capable of providing a full range of fractional delay values (i.e. −0.5 ≤ ∆ ≤ 0.5

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.6: Inefficient (a) vs. Efficient (b) Structures for Inducing a Fractional Delay and

Performing Decimation

79

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.7: Single-Sampling-Rate Structure

samples).

4.4.3 Interpolating with Halfband Filters

The interpolation stage of the multirate structure of Figure 4.2 can be implemented

using a low-pass FIR halfband filter [36] [37] [38], as depicted in Figure 4.8a. When it is

implemented in this fashion, the low-pass FIR halfband filter is able to upsample a signal by

a factor of L = 2 while simultaneously suppressing any spectral images.

To achieve this implementation, the FIR halfband filter must be decomposed into its

polyphase filter components. The FIR halfband filter is unique in that every second co-

efficient as measured from both sides of the centre tap is a zero, the centre tap having a

value of 0.5. Thus, its polyphase filter components consist of a symmetric low-pass filter and

an integer delay path, which are respectively denoted as H0(z2) and z−NHB in Figure 4.8a.

Both filters can be made to run at the input sampling rate by rearranging the structure so

that upsampling is performed at the filter outputs, which is illustrated in Figure 4.8b. The

rearranged structure can be made more efficient by replacing the upsamplers and the adder

with a single commutator at the filter’s output that runs at twice the input rate, as shown in

Figure 4.8c [38]. Note that there would normally be a gain at the filter output to compensate

for any filter attenuation; however, for the purposes of this research, it is assumed that all

filter coefficients have been normalized with respect to the center tap.

80

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

H0(z)

H1(z)

HL-1(z)

z-1

z-1

z-1

x[n]

 [n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H1(z)

H0(z)

z-1

xu[n]

 2
<z>

 2
<z>

x[n]

H1(z2)

H0(z2)

z-1

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

z-1

HFD1(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

Figure 4.8: Multirate Halfband Upsampler

Implementing a FIR halfband filter in a single-sampling-rate structure requires that the

commutator be removed from the output. This results in two streams of data at the filter’s

output, as depicted in Figure 4.9. The first stream, denoted as u0[n], is the output of filter

H0(z), which is of length is (NHB + 1)/2, where NHB is the length of the original FIR

halfband filter. The second stream, denoted as u1[n], is the original input signal x[n] delayed

by an a factor of N1 = ((NHB − 1)/2− 1)/2 samples. Since FIR halfband filters are always

of odd length, H0(z) will always be of even length. Thus, u0[n] will be delayed by a factor

of 0.5 samples relative to u1. Both streams of data can then be connected to an FDF that

has been decomposed into L = 2 phases.

Another advantage of the FIR halfband filter is that it can be cascaded with other FIR

halfband filters to increase the upsampling rate by powers of 2 (i.e. L = 4, 8, 16, ...) [38].

81

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

H0(z)

H1(z)

HL-1(z)

z-1

z-1

z-1

x[n]

 [n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H1(z)

H0(z)

z-1

xu[n]

 2
<z>

 2
<z>

x[n]

H1(z2)

H0(z2)

z-1

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

z-1

HFD1(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

Figure 4.9: Single-Sampling-Rate Halfband Upsampler

With each subsequent cascade stage, the width of the transition band also increases by a

factor of L; thus, each subsequent filter requires fewer coefficients to implement, up to a

minimum of filter length of NHB = 5.

Note that implementing a cascade of FIR halfband filters in a single-sampling-rate struc-

ture becomes significantly more challenging with each additional stage in the cascade, as the

structure must divide the signal into L streams at each stage. An example showing how a

FIR halfband cascade can be implemented as a single-sampling-rate structure to upsample

a signal by a factor of L = 4 is provided in Appendix B.

4.4.4 Polyphase FDF Structure and Downsampling

As discussed in Section 4.4.2, fractional delay and decimation can be performed by imple-

menting the FDF in the same fashion as the polyphase structure of Figure 4.7. Up until this

point, it has been assumed that the structure is “fixed” in the sense that the input to each

sub-filter in the FDF polyphase filter structure is tied to the output of a specific sub-filter of

the interpolator. This results in an output signal y[n] that is delayed by some fixed fractional

amount of samples. The purpose of the FDF, however, is to be able to fractionally delay y[n]

by any value in the range of −0.5 ≤ ∆ ≤ 0.5 samples. Achieving this full range of ∆ values

in a single-sampling-rate structure requires that the FDF input streams be reconnected in

specific ways; thus, switching logic must be added to the structure.

To understand why this is the case, consider a generalized single-sampling-rate structure

that utilizes an upsampling/downsampling factor of L. The output of the interpolator is

partitioned into L “polyphase streams,” which, following the notation used in Appendix B

82

are denoted respectively as α−b/L[n], 0 ≤ b ≤ L − 1. In this case, the total value of the

subscript (i.e. −b/L) represents the amount by which each stream is delayed in samples

relative to the original sample rate of Fs. When combined using the method described

below, these streams form the interpolated signal x̂u[k].

x̂u[0] = α0[0]

x̂u[−1] = α−1/L[0]

x̂u[−2] = α−2/L[0]

... =
...

x̂u[−L+ 1] = α−(L−1)/L[0]

Assume for the moment that there is no FDF present in the system. Recall that down-

sampling in a multirate structure is performed by selecting every Lth sample of x̂u[k], such

that y[n] = x̂u[nL]. If the desired output is a set of interpolated x[n] values, x̂u[k] need only

be delayed by some integer b so that y[(n + b)/L] = x̂u[(n + b)L]. This can alternatively

be thought of as setting the output y[n] equal to one of the interpolator output/FDF input

streams α−k/L[n] in a single-sampling-rate structure.

Now consider a system with an FDF that has been decomposed into L sub-filters. Each

of the interpolator’s output streams is connected to the input of one of the sub-filters. The

coefficients of each sub-filter are calculated based on a given fractional delay value, ∆, in units

samples. The sub-filter outputs are then added together to produce a fractionally delayed,

“downsampled” (decimated) output signal, y[n]. This method of decimation is more efficient

than running the FDF at a higher sampling rate and then downsampling by L because it

reduces the number of multiplications per second while simultaneously making use of each

sample (i.e. no samples are “discarded”).

However, as a consequence of breaking the FDF up into L smaller filters, the actual

range of ∆ values that the FDF is capable of applying to a given signal is reduced by a

factor of L. In other words, the FDF can only apply a delay of −1/L ≤ ∆ ≤ 1/L to any

given output stream. Producing a full range of ∆ values therefore requires that the filter be

capable of switching between different output streams. Note that the inherent delay of the

83

single-sampling-rate structure (i.e. the total delay excluding ∆) will affect where the chosen

output stream appears relative to an output stream with no fractional delay.

For example, if L = 2, there will be two streams: α0[n] and α−1/L[n]. If the inherent

delay of the system is such that stream α0[n] is not offset by any default fractional amount,

the fractional delay range over which α0[n] can operate will be from −0.25 ≤ ∆ ≤ 0.25

samples. The range of δ for α−1/L[n], on the other hand, will be from −0.75 ≤ ∆ ≤ −0.25.

To operate in the remaining range of 0.25 ≤ ∆ ≤ 0.5 samples, each output stream need only

be delayed by a single integer amount.

The last item that must be discussed is how a specific stream α−k/L[n] can be selected

at the output. To select a specific stream, it must be connected to filter H0(z). All other

streams must be connected to the remaining filters in a way that ensures their samples are

arranged “forward” in time. That is to say, if stream α0[n] is the input to filter H0(z),

then the input to H1(z) must be α−(L−1)/L[n] delayed by one sample, the input to H2(z)

must be α−(L−2)/L[n] delayed by one sample, and so on and so forth, with the final filter

HL−1(z) having the input α−1/L[n] delayed by one sample. Conversely, if α−(L−1)[n] is the

input to H0(z), then the input to H1(z) must be α−(L−2)/L[n], the input to H2(z) must be

α−(L−3)/L[n], and so on and so forth, with the final filter HL−1(z) having input α0[n]. Both

scenarios are depicted in Figures 4.10a and 4.10b, respectively. Thus, there are a total of L

possible ways to connect the interpolator output streams to the sub-filter inputs of the FDF

polyphase filter structure.

In summary, an FIR FDF can be implemented as a single-sampling-rate structure through

the use of polyphase decomposition. Additional logic that controls switching between sub-

filter input streams must be included in order to obtain a full fractional delay range of

−0.5 ≤ ∆ ≤ 0.5 samples. The logic must also be able to change the filter coefficients in

accordance with the desired fractional delay value. The final structure will look similar to

the one depicted in Figure 4.11.

84

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.10: Connection Sequences Required to Obtain Streams a) α0[n] and b)

α−(L−1)[n] at the Structure Output

Frac. Delay DecimationInterpolation

 L

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with
zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

HLPU0(zL)

HLPU1(zL)

HLPU(L-1)(zL)

z-1

z-1

z-1

x[n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H0(z)

xu[n]

 2
<z>

 2
<z>

x[n]

H0(z2)

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)α-1/L[n]

α0[n]

β[n]

HFD(L-1)(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

α-(L-1)/L[n]

z-1

z-N1

z-1

z-2N1

HFD(zL) Lx[n]
xu[k]

y[n]
 u[k]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLPU(zL) HLPD(zL)
xu

<z>[k] [k]
 L
<z>

hFD[0] hFD[1] hFD[2] hFD[3] hFD[4] hFD[5] hFD[6]

 u[7] u[6] u[0] u[5] u[4] u[3] u[2] u[1]

hFD[7]

 u[0] u[1] u[2] u[3] u[4] u[5] u[6] u[7]

y[0] y[1] y[2] y[3]

 L
<z>

z-1

z-1

z-1

x[n]

xu[k]

 L
<z>

 L
<z>

 L
<z>

xu[k]

HFD0(zL)

HFD1(zL)

HFD(L-1)(zL)

z-1

z-1

z-1

y[n]

xu[k]

z-1

z-1

z-1

xu[k] HFD0(z) L

HFD1(z) L

HFD(L-1)(z) L y[n]

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

 L
 u[k]

xu
<z>[k]

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

a) b)

a) b)

HFD0(z)

HFD1(z)

HFD(L-1)(z)

α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[(n-L+1)/L]

HFD0(z)

HFD1(z)

HFD(L-1)(z)α-1/L[n]

α0[n]

α-(L-1)/L[n]

y[n]

z-1

z-1

z-1

z-1

z-1

HLPU(L-1)(z)

HLPU1(z)

HLPU0(z)

y[n]

HFD0(z)

HFD1(z)

HFD(L-1)(z)

x[n]

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

Fractional
Delay, Δ

a) b)

Figure 4.11: Single-Sampling-Rate Structure with Delay and Switching Logic

4.5 Filter Design Process

Filters are designed to minimize some performance measure or another. In this thesis,

the filters are designed to minimize the MSE with “equal” weighting across the passband.

The error in the transition and stop bands is ignored. Referring back to Section 4.3, this

means that if two filters were designed to achieve a combined MSE of -60 dB, their individual

MSEs were set to approximately half of the combined MSE (i.e. -63.1 dB each). Similarly,

if three filters were used, their individual MSEs were each set to approximately -64.8 dB.

85

Note that in the case of a halfband filter, the filter’s MSE is considered to be the sum of its

passband and stopband MSEs. This is because the halfband filter is used to upsample a signal

while simultaneously suppressing any spectral images. When the signal is downsampled, the

suppressed spectral images will recombine with the original signal, thus producing additional

error.

4.5.1 Halfband Filter Design

The FIR halfband filters used in this research were all designed using MATLAB’s

fdesign.halfband function. The function designs the filter using either an equiripple

or Kaiser-windowed method, and optimizes it with respect to to one of three parameters:

stopband attenuation, transition width, or filter length. Obviously, two parameters must be

specified in order to optimize for the third.

An equiripple design method was selected so that the MSE in the stopband was identical

to that in the passband, which made it easier to control the total MSE. For each filter, the

fdesign.halfband function was given a transition bandwidth and stopband attenuation

(the additive inverse of the desired passband MSE in dB) as inputs in order to optimize the

filter length required to meet the previously specified passband MSE criteria.

4.5.2 Fractional Delay Filter Design

In order to determine the shortest-length filter capable of meeting the specified MSE

criteria, a MATLAB script was used. The script compared the MSEs of filters designed using

the Rectangular, Hanning, Hamming, Blackman, and Kaiser windowing methods, as well as

the maximally-flat filter with coefficients obtained from the Lagrange interpolation formula,

against increasing filter length, N , for a specified fractional delay, ∆, and upsampling rate, L.

In the case of the Kaiser window, the shape parameter, β, was selected through trial and error

until the optimal filter length was determined. Only odd-length filters were considered so

that their fixed delay was an integer value (i.e. D = (N − 1)/2 is an integer). The fractional

delay was selected to be ∆ = 0.5 samples, which, as previously mentioned, produces the

worst-case MSE scenario for all odd-length filters. Upsampling rates of L = 1, 2 and 4

86

were chosen (L = 1 corresponding to no upsampling). Plots of the MSE versus the filter

length for all methods are provided in Figures 4.12 through 4.17. The MSE thresholds of the

plots that utilize upsampling were set in accordance with the “equal weighting” parameter.

Specifically, L = 2 requires one halfband filter and one FDF, thus the MSE threshold is ≈

-63.1 dB (-47.1 dB for the secondary path). L = 4 requires two halfband filters and one

FDF, thus the MSE threshold is ≈ -64.8 dB (-48.8 dB for the secondary path).

4.6 Performance Evaluation and Cost Analysis

It is clear from the plots in Figures 4.12 and 4.15 that an increase of filter length N

corresponds to a decrease in passband MSE. The rate at which this decrease occurs is filter-

specific. For the windowed sinc functions, this decrease is proportional to the amount that

each window tapers the sinc function in the passband. For the maximally-flat filter whose co-

efficients were obtained from the Lagrange interpolation formula, the decrease is proportional

to the interpolation error.

Note that since the maximally-flat filter is maximally-flat about 0 cycles/sample, its fre-

quency response tapers off significantly at the passband limit of 0.463867187 cycles/sample;

hence, the MSE is very high for the maximally-flat filter in Figures 4.12 and 4.15. Fig-

ures 4.13, 4.14, 4.16, and 4.17, however, demonstrate that upsampling a signal prior to

applying a fractional allows FDFs to be designed so that they meet the MSE criteria in a re-

duced passband using fewer coefficients. Upsampling the signal by larger factors is therefore

particularly advantageous for minimizing the length of maximally-flat filters, as Figures 4.14

and 4.17 demonstrate.

Based on the results obtained from Figures 4.12 through 4.17, three possible design

candidates for both the main and secondary path FDFs were selected:

1. Kaiser-Windowed Sinc Function, No Upsampling

2. Kaiser-Windowed Sinc Function, Single-Sampling-Rate Polyphase Structure, L = 2,

Equiripple Halfband

87

3. Maximally-Flat (Lagrange Interpolation), Single-Sampling-Rate Polyphase

Structure, L = 4, Equiripple Halfband

Tables 4.1 and 4.2 provide the MSE performance, cost in terms of multipliers, and estimated

FPGA memory usage for the main and secondary path filter designs, respectively.

The multiplier cost analysis assumes that the coefficients are pre-calculated and stored in

FPGA memory; thus, the total number of multipliers required in any design is assumed to be

equal to the combined length of all filters in the design. Coefficient symmetry is accounted for

when applicable, which significantly reduces the number of multipliers required to implement

halfband filters. All multipliers are assumed to be of size 18 x 18 bits.

The memory cost analysis provides an estimate of the number of memory blocks that

may be used to store coefficients. In this analysis, one memory block is considered to be an

M10K block on an ALTERA FPGA, which contains 10240 bits of memory. It is assumed

that each coefficient will use 18-bits of memory on an FPGA, plus 2 parity bits, which

allows for a total of 512 coefficients to be stored on each M10K blocks. Since the DOCSIS

3.1 time stamp is only accurate up to a value of 2−8 samples [15], the maximum fractional

delay resolution implementable on an FPGA is considered to be 2−8 samples. Each filter

is therefore considered to have a maximum of 28 total possible coefficient implementations,

which reduces to 27−1 unique coefficient implementations when FIR symmetry is accounted

for. That is to say, the impulse responses of FIR filters that correspond to a delay between

-0.5 to 0 samples will simply be mirror images of those that correspond to a delay between

0 to 0.5 samples; thus, their coefficients are redundant and need not be stored.

4.7 Results

Ultimately, the most cost-effective main-path FDF proved to be Design #2, which was

the Kaiser-windowed sinc function with roll-off parameter β = 4.970 implemented as a single-

sampling-rate structure. This design involves upsampling the input by a factor of L = 2 via

a FIR halfband filter. The total passband MSE of the design was -60.7 dB. A total of 40

multipliers and 6 M10K memory blocks are required for implementation.

88

For the secondary-path FDF, the most cost effective design was also Design #2, which

was the Kaiser-windowed sinc function with roll-off parameter β = 3.056 implemented as a

single-sampling-rate structure. Again, this design involves upsampling the input by a factor

of L = 2. The total passband MSE of the design was -45.5 dB, which translates to -61.5

dB with a worst-case micro-reflection with power -16 dBc. A total of 29 multipliers and 15

M10K memory blocks are required for implementation.

89

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, No Upsampling

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 4.79
Lagrange Poly.
MSE Threshold

Figure 4.12: Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length, No

Upsampling

90

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, L = 2

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 6.62
Lagrange Poly.
MSE Threshold

Figure 4.13: Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 2

91

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, L = 4

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 7.17
Lagrange Poly.
MSE Threshold

Figure 4.14: Main Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter Length,

Signal Upsampled by L = 4

92

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, No Upsampling

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 3.056
Lagrange Poly.
MSE Threshold

Figure 4.15: Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter

Length, No Upsampling

93

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, L = 2

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 3.87
Lagrange Poly.
MSE Threshold

Figure 4.16: Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter

Length, Signal Upsampled by L = 2

94

0 10 20 30 40 50 60 70 80 90 100 110
−120

−100

−80

−60

−40

−20

0
Mean Squared Error vs. Odd Filter Length, ∆ = 0.5, L = 4

Filter Length, N

M
SE

 (d
B)

Rectangular
Hanning
Hamming
Blackman
Kaiser, β = 3.86
Lagrange Poly.
MSE Threshold

Figure 4.17: Secondary Path: Worst Case MSE (∆ = 0.5 samples) vs. Odd Filter

Length, Signal Upsampled by L = 4

95

Table 4.1: Main Path Filter Designs: Performance and Cost Analysis

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Kaiser Windowed Sinc FD, β = 4.790 -60.0 43 198144 22
Totals -60.0 43 198144 22

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Equiripple Halfband -64.5 25 450
Kaiser Windowed Sinc FD, β = 6.60 -63.1 9 41472
Totals -60.7 34 41922 5

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Equiripple Halfband #1 -68.7 26 468
Equiripple Halfband #2 -78.2 4 72
Lagrange Polynomial FD -84.1 7 32256
Totals -68.1 37 32796 4

Design #3 (Upsample by L=4)

4

Design #1 (No Upsampling)

Design #2 (Upsample by L=2)

5

96

Table 4.2: Secondary Path Filter Designs: Performance and Cost Analysis

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Kaiser Windowed Sinc FD, β = 3.056 -44.0 29 133632 15
Totals -44.0 29 133632 15

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Equiripple Halfband -47.1 17 306
Kaiser Windowed Sinc FD, β = 3.88 -50.5 7 32256
Totals -45.5 24 32562 4

Filter MSE (dB) Multipliers Memory
(bits)

Memory
(M10K Blocks)

Equiripple Halfband #1 -53.5 18 324
Equiripple Halfband #2 -53.5 3 54
Lagrange Polynomial FD -63.3 5 23040
Totals -50.2 26 23418 3

Design #3 (Upsample by L=4)

3

Design #1 (No Upsampling)

Design #2 (Upsample by L=2)

4

97

5. Conclusion and Future Work

5.1 Contributions and Results

The main contribution of this work is a theoretical model for a DOCSIS 3.1 cable mo-

dem combined with its upstream channel that is suitable for implementation in an field

programmable gate array (FPGA) as an emulator. While the emulator itself was not con-

structed, the model was verified through simulation with MATLAB scripts. The MATLAB

scripts simulate steady-state transmission in the upstream direction over a data-over-cable

service interface specification (DOCSIS) 3.1 network. Since the channel and cable modem

(CM) are modelled at baseband, upconversion and downconversion are eliminated. This

allows the emulator to be placed on the same FPGA as the receiver while debugging the

receiver.

The transmitter portion of the model generates pseudo-random data sequences for a

user-defined number of CMs. It is capable of formatting the data sequences into orthogonal

frequency-division multiple access (OFDMA) frames according to one of three transmission

modes outlined in the DOCSIS 3.1 standard: traffic mode, fine ranging mode, or probing

mode. The resulting OFDMA frames are converted into time-domain sequences for use with

the upstream channel model.

The upstream channel model is capable of simulating impairments that are specific to

each CM, as well as impairments that are common to all CMs on a DOCSIS 3.1 network. CM-

specific impairments include integer and fractional timing offsets, micro-reflections, carrier

phase offset (CPO), fractional carrier frequency offset (CFO), and network gain/attenuation.

Common channel impairments include carrier hum modulation, AM/FM ingress noise, and

98

additive white Gaussian noise (AWGN).

It was found that micro-reflections could be emulated with a fractional delay filter (FDF).

With the aim that the emulator, i.e. the MATLAB model, be implemented on an field

programmable gate array (FPGA), efficient FDF structures were researched and compared

from an FPGA implementation cost perspective. The filter structure of Design #2 from

Table 4.1 uses the least number of multipliers relative to any other design candidate, making

it the most promising from an FPGA implementation perspective.

Furthermore, the MATLAB scripts developed in this thesis can be used in industry at

the stage where the receiver is simulated in MATLAB. It provides a means for developers

to test DOCSIS 3.1 receiver algorithms, such as those used for timing recovery and channel

estimation.

5.2 Future Work

Due to the large scope of the DOCSIS 3.1 standard, it was decided that only the most

critical features required to simulate upstream transmission should be modelled for the pur-

poses of this thesis. It is suggested that the “cross-shaped” quadrature amplitude modulation

(QAM) constellations (i.e. 8-QAM, 32-QAM, 128-QAM, 512-QAM, 2048-QAM) as well as

forward error correction (FEC) via low-density parity check (LDPC) encoding be incorpo-

rated into the MATLAB model in the future.

To test FEC/LDPC encoding would require both burst and impulse noise be added to

the channel model. Burst noise is, as its names suggests, a short wideband burst of noise.

It is typically caused by some electrical disturbance in the home, for example turning on

a blender. Impulse noise is shorter and stronger. It could be caused by lightning striking

the ground near the coaxial cable. Normally, both of these noise types severely corrupt any

data sent during the time that they are present, rendering it unrecoverable at the receiver.

However, if FEC/LDPC encoding is implemented, the chances of recovering the corrupted

data are significantly higher.

One other channel impairment that may be worth implementing in the future is phase

99

noise. Phase noise is produced by the oscillators that are used in the CMs and the cable

modem termination system (CMTS) to upconvert and downconvert the baseband signal to

and from radio frequency, respectively [39]. Since OFDMA uses multiple subcarriers that

are spaced closely together, it is likely that phase noise will have an interesting effect on the

received OFDMA signal.

In Chapter 4, infinite impulse response (IIR) filters were excluded from the research as

possible FDF design candidates. This was due to the fact that their impulse response will

extend beyond the cyclic prefix, which could affect the data of an OFDMA frame in an

undesirable way. However, if the impulse response becomes small enough by the time it

crosses over into the OFDMA frame, its affects may be negligible. If this is the case, then

IIR filters may also be a viable means of approximating an ideal FDF. In fact, according

to [31], IIR filters generally require fewer multiplies to implement compared to finite impulse

response (FIR) filters, which can potentially make them more cost-effective when considering

an FPGA implementation. It may be worth investigating IIR filter designs and performing

a cost analysis on them.

100

A. MATLAB Variable Descriptions

This appendix contains the tables of MATLAB variables referenced in Chapter 3. With

the exception of Table A.8, each table is formatted as follows:

Name Description Format Values

Variable name as it
appears in the MATLAB
simulation.

A description of the
variable.

Format in
which the
variable is
stored (i.e.
integer,
array, etc.)

The value or range of values pertaining
to the variable. Instructions on how to
declare the variable and/or recommended
settings may be included here as well.

In the case of Table A.8, which lists the “Output and Debug Variables,” any relevant

information pertaining to the values of the variables is provided in the “Description” of the

second column. The fourth column instead shows which variables are required outputs or

optional for debugging.

Note that should the user desire to correct for the integer timing, frequency, or network

gain (attenuation) offsets between frames, their respective offset correction variables provided

in Table A.4 (Timing int, Freq adj, Pwr offset) must be declared in the MATLAB

workspace by the user prior to calling the transmitter function.

101

Table A.1: General OFDMA Frame Setup Variables

Name Description Format Values

Num_frames The number of frames
to simulate

Integer 0, 1, 2, …

Num_CM

The number of CMs
connected to the
system, regardless of
whether or not they
are transmitting

Integer

0, 1, 2, …

0 = 2k Mode (IFFT size 2048)
1 = 4k Mode (IFFT size 4096)
0 = Do Not Transmit
1 = Traffic
2 = Fine Ranging
3 = Probing
 0 = Excluded Subcarrier
-1 = Unused Subcarrier
 1, 2, 3, … = Index of Transmitting CM
1 - 12 = BPSK to 4096-QAM
(2^order = Mod Type)
Note: Only 1, 2, 4, 6, 8, 10, 12 available
in the current simulation
1 - 7 = Pilot Patterns 1 - 7 (2k Mode)

6 - 36 (2k Mode)
6 - 18 (4k Mode)

N_CP Cyclic Prefix Integer 96, 128, 160, 192, 224, 256, 288, 320,
384, 512, 640

N_RP Roll-off Period Integer 0, 32, 64, 96, 128, 160, 192, 224

Mod2k / Mod4k QAM constellation
orders for the frame

Array of
size 2048
or 4096

TranMode

CM_mode

IFFT size of the frame

Transmission mode of
each CM

Integer

Array of
size
Num_CM

Array of
size 2048
or 4096

Subcarrier mappings
for the frameSC2k / SC4k

Array of
size 2048
or 4096

Pilot mappings for the
framePilot2k / Pilot4k

Integer

8 - 14 = Pilot Patterns 8 - 14 (4k Mode)

K Number of OFDMA
frames

102

Table A.2: Fine Ranging Variables

Name Description Format Values
<= 512 for 2k Mode
<= 256 for 4k Mode
-Must span <= 512 subcarriers including
excluded subcarriers in either 2k or 4k
Mode
-Must be an even number
-Must be distributed equally amongst
both sides of the Fine Ranging
subcarriers (N_gb/2 on either side)
N_gb = M*Q - N_fr, where M is the
number of minislots allocated to Fine
Ranging and Q is the number of
subcarriers per minislot (8 or 16, 2k or
4k Mode)
-Must span less than N_fr subcarriersPreamble Preamble sequence for

Fine Ranging
Array of
size N_fr

N_fr

Number of Fine
Ranging subcarriers
allocated to each CM
in Fine Ranging Mode

Array of
size
Num_CM

N_gb

Number of Guard
Band subcarriers
allocated to each CM
in Fine Ranging Mode

Array of
size
Num_CM

103

Table A.3: Probing Frame Variables

Name Description Format Values

0 = No staggering

SC_skip
Number of subcarriers
each CM will skip in
between probing

Array of
size
Num_CM

0 - 7

0 = reduce power per subcarrier by 2 dB
1 = reduce power per subcarrier by 3 dB
2 = reduce power per subcarrier by 4 dB
3 = reduce power per subcarrier by 5 dB
4 = reduce power per subcarrier by 6 dB
5 = reduce power per subcarrier by 7 dB
6 = reduce power per subcarrier by 8 dB
7 = reduce power per subcarrier by 9 dB
0 = Equalizer enabled
1 = Equalizer disabled

EQ_flag

1 = Use alternate power settings
specified by the values of start_SC listed
below:

0 - 7

Note: May conflict with Fractional
Timing Offset, which uses pre-
equalization coefficients. Use caution
when disabling.

Array of
size
Num_CM

Determines whether or
not to use transmit
equalization

Array of
size
Num_CM

0 - K-1

Array of
size
Num_CM

Specifies whether or
not to use alternate
power settings during
probing based on the
value of start_SC

PW_flag

0 = Transmit using regular power
settings

Stagger
Determines whether or
not a CM is probed
using a staggered

Array of
size
Num_CM

1 = Staggering

NOTE: This setting
has not been
rigorously tested in the
current version of the
MATLAB model, and
should therefore be set
= 0 in all test cases

Sym_in_frame

Index of the OFDMA
symbol on which
probing starts for a
specific CM

start_SC Subcarrier index on
which probing begins

Array of
size

104

Table A.4: Offset and Offset Correction Variables

Name Description Format Values
0 to 2048-N_RP (2k Mode)

0 to 2048-N_RP (2k Mode)

-0.5 to 0.5

-π to π

-0.5 to 0.5

-0.01 to 0.01

-9 to 3

-9 to 3

Complex coefficients

Array of
size
Num_CM

Freq_adj

Correctional factors
for carrier frequency
offsets of each CM
(cycles/samples)

Array of
size
Num_CM

Timing_frac_offset
Randombly generated
fractional timing
offsets for each CM

Array of
size
Num_CM

2^-8 resolution

Array of
size
Num_CM

10^-3 resolution

0 to 4096-N_RP (4k Mode)

Timing_int
Correctional factors
for integer timing
offsets of each CM

Array of
size
Num_CM

0 to 4096-N_RP (4k Mode)

Timing_int_offset
Randombly generated
integer timing offsets
for each CM (samples)

Array of
size

Randomly generated
carrier phase offset

Phase_offset

Freq_offset

Randomly generated
carrier frequency
offsets for each CM
(cycles/samples)

Array of
size
Num_CM

Note: If fractional timing offset is
enabled, these coefficients will be used
to induce it. Thus, to correct for the
fractional timing offset, any receiver
function must adjust coefficients
appropriately.

Array of
size
Num_CM

Pre-equalization
coefficients for each
CM (each row
contains a specific
CM's coefficients)

Eq_set_2k / Eq_set_4k

Array of
size
Num_CM x
2048 or
Num_CM x
4096

10^-2 resolution

10^-3 resolution

Pwr_adj
Correctional factors
for network gain of
each CM (dB)

10^-2 resolutionPwr_offset
Randombly generated
network gain for each
CM (dB)

105

Table A.5: Channel Setup Variables (1/3)

Name Description Format Values
0 = Disabled
1 = Enabled
0 to 6
Note: DOCSIS 3.1 standard accounts for
only one micro-reflection
<= 800

0 = Disabled
1 = Enabled
0 = Disabled
1 = Enabled
0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled
0 = Disabled
1 = Enabled

Hum_freq
Carrier hum waveform
frequency (Hz) Double

Recommended value = 60

Hum_phase Phase of carrier hum
waveform (rads)

Double -π to π

Microref_en Enable micro-
reflections

Integer

Microref_num
Number of micro-
reflections per CM Integer

Microref_time_limit
Maximum echo time
of a micro-reflection
(microseconds)

Double Recommended value = 6

Timing_int_offset_en Enable integer timing
offset

Integer

Timing_frac_offset_en Enable fractional
timing offset

Integer

Phase_offset_en Enable carrier phase
offset

Integer

Freq_offset_en Enable carrier
frequency offset

Integer

Hum_trans_time
Transition time of
carrier hum waveform
(seconds)

Double
Recommended value = 0.25*10^-3

Hum_en Enable AM carrier
hum modulation

Integer

Frame_tag_mode

0 = Fill the additional array elements at
the start and end of the current frame
with zeros.
1 = Concatenate the beginning of the
first frame with the end of a copy of the
first frame

Integer

Determines whether or
not the beginning of
the first frame in a
transmission burst
should be
concatenated with a
seequence of zeros or
a duplicate of the first
frame

106

Table A.6: Channel Setup Variables (2/3)

Hum_atten_dBc Attenuation of carrier
hum waveform (dBc)

Double Recommended value <= -26

0 = Disabled
1 = Enabled

 [x, y, z]

0 = "Block" of frequencies
1 = AM
2 = FM
-51.2*10^6 to 51.2*10^6
Note 1: The user should ensure that the
bandwidth of the ingress signal does not
exceed these boundaries.
Note 2: The carrier frequency of a
"Block" ingress is the center frequency
of the block itself.

Recommended value = 200*10^3

Ingress_freq_spacing

Vector specifying the
spacing between
frequencies in "Block"
ingress noise signals
(Hz)

Row vector
of doubles

Must be smaller than half the bandwidth.
Only applicable to "Block" ingress. If no
"Block" ingress is present, all elements
must be zeros.

Ingress_FM_freq

Vector specifying the
frequency gain
constant in V/Hz, used
to calculate peak
frequency deviation in
FM message signals

Row vector
of doubles

Recommended value = 75*10^3

("Block", AM or FM)Ingress_BW

Vector specifying the
bandwidth of each
individual ingress
noise signal (Hz)

Row vector
of doubles

Ingress_carrier_freq

Vector specifying the
carrier frequency of
each individual ingress
noise signal (Hz)

Row vector
of doubles

Note: When ingress noise is enabled, the
user must specify the charateristics of
each individual ingress noise signal
separately in their respective row
vectors. For example, if there are three
ingress noise signals present, each of the
following vectors will take on the form:

-π to π

where x, y, and z each represent their
own signal.

Ingress_carrier_phase Vector specifying the
carrier frequency

Row vector
of doubles

Ingress_en Enable ingress noise Integer

Ingress_type
Vector specifying the
type of each individual
ingress noise signal

Row vector
of integers

107

Table A.7: Channel Setup Variables (3/3)

Recommended value = 200*10^3

Ingress_freq_spacing

Vector specifying the
spacing between
frequencies in "Block"
ingress noise signals
(Hz)

Row vector
of doubles

Must be smaller than half the bandwidth.
Only applicable to "Block" ingress. If no
"Block" ingress is present, all elements
must be zeros.

Ingress_FM_freq

Vector specifying the
frequency gain
constant in V/Hz, used
to calculate peak
frequency deviation in
FM message signals

Row vector
of doubles

Recommended value = 75*10^3

0, 1, 2, …

< 0

0 = Disabled
1 = Enabled
> 0
Example = 40

("Block", AM or FM)

Ingress_atten_dBc
Vector specifying the
carrier attenuation in
each ingress noise

Row vector
of doubles Example = -40

Ingress_BW

Vector specifying the
bandwidth of each
individual ingress
noise signal (Hz)

Row vector
of doubles

CNIR Carrier-to-noise ratio
(dB)

Double

Noise_en Enable AWGN Integer

-π to π

Ingress_num_message_
sig

Vector specifying the
number of sinusoids
an AM or FM message
signal

Row vector
of integers

Only applicable to AM or FM ingress. If
no AM or FM ingresses are present, all
elements must be zeros.

Ingress_carrier_phase Vector specifying the
carrier frequency

Row vector
of doubles

108

Table A.8: Output and Debug Variables

Name Description Format Type

b_orig_CM_frame

Cell array containing Num_CM cell arrays,
which in turn contain the bit sequences
transmitted by each CM in traffice mode
over a single frame

Cell array of size
Num_frames

Required
Output

Complete_Frame
The number of CMs connected to the
system, regardless of whether or not they
are transmitting

Cell array of size
Num_frames

Optional
Debug
Output

Complete_Frame_Probing
_CM_index

Cell array containing all 2048 x K or 4096
x K OFDMA frame structures for probing
frames, with CM indices replacing the pilot
symbols

Cell array of size
Num_frames

Optional
Debug
Output

tx_CM_frame
Cell array containing Num_CM column
vectors, which in turn contain the Tx signals
of each CM in each frame

Cell array of size
Num_frames

Required
Output

tx_frame
Cell array containing the combined Tx
signals of all CMs in each frame

Cell array of size
Num_frames

Optional
Debug
Output

rx_CM_frame
Cell array containing Num_CM column
vectors, which in turn contain the Rx
signals of each CM in each frame

Cell array of size
Num_frames

Required
Output

rx_frame Cell array containing the combined Rx
signals of all CMs in each frame

Cell array of size
Num_frames

Required
Output

109

B. Upsample by L = 4 Single-Sampling-Rate

Structure Example

This appendix contains the example that is referenced in Section 4.4.3, which involves

two finite impulse response (FIR) halfband filters that are cascaded in a single-sampling-

rate structure to upsample a signal by a factor of L = 4. A block diagram of the cascade

is provided in Figure B.1. The numbers used in this example come from main-path filter

Design #3, which was described in Section 4.6. Referring to Figure B.1, HHB1(z) has a

length of NHB1 = 103 coefficients and a transition width of 0.0361328125 cycles/samples.

Filter HHB2(z) has a length of NHB2 = 15 coefficients and a transition width of 0.268066406

cycles/samples. Both filters have a stop-band attenuation of 74 dB, which translates to a

worst-case combined MSE of -68.2 dB.

HHB1(z) is decomposed into polyphase components H0(z) and H1(z). H0(z) is a filter of

length N0 = (NHB1 + 1)/2 = 52 coefficients and delay D0 = (N0 − 1)/2 = 25.5 coefficients,

while H1(z) is a filter of length N1 = (N1 − 1)/2 = 51 which actually translates to a pure

integer delay of D1 = (N1 − 1)/2 = 25 samples. The output of H0(z) is stream u0[n], which

is delayed by a factor of 0.5 samples relative to stream u1[n], the output of filter H1(z).

HHB2(z) is decomposed into polyphase components H2(z) and H3(z). H2(z) is a sub-filter

of length N2 = (NHB2 + 1)/2 = 8 coefficients and delay D2 = (N2 − 1)/2 = 3.5 coefficients,

while H1(z) is a sub-filter of length N3 = (NHB2 − 1)/2 = 7 coefficients, which actually

translates to a pure integer delay of D3 = (N3 − 1)/2 = 3 samples.

In order to produce L = 4 streams at the output that are fractionally delayed by a factor

of 1/L relative to each other, sub-filters H2(z) and H3(z) must be further decomposed. H2(z)

110

H3,1(z)

H3,0(z)

H3,1(z)

H3,0(z)

HHB1(z2) HHB2(z4) 2 2 HFD(z4) 4

HHB1(z2) 2 HFD(z2) 2

Sw
itc

hi
ng

 a
nd

 D
el

ay
 L

og
ic

HFD0(z)

HFD1(z)

HFD2(z)

HFD3(z)

Fractional
Delay, Δ

x[n] [n,Δ]

 L HFD(zL) Lx[n]
xu[n]

 [n]
 u[n]

sampling rate
Fsu = LFs

sampling rate
Fs

sampling rate
Fs

HLP(zL)x[n]
xu

<z>[n]
xu[n]

sampling rate
Fsu = LFs

sampling rate
Fs

upsampling with zero stuffing

ω
ω0u

 u(ejω)= LX(ejLω)

Xu
<z>(ejLω)

-ω0u 4π
L

2π
L

2π
L

ω0
L

- ω0u = -

2π
L

π

ω0
L

2π

... ...

x[n]

v0[n]

v2[n]

u0[n]

u1[n]

α0[n]

α1[n]

α2[n]

α3[n]

β1[n,Δ]

β0[n,Δ]

β2[n,Δ]

β3[n,Δ]

u0[n]

u1[n]

low-pass filter

x[n] xu[n]
x1[n]

x0[n] u0[n]

u1[n]

H0(z)

H1(z)

HL-1(z)

z-1

z-1

z-1

x[n]

 [n]

H1(z)

z-1

z-1

v1,0[n]

v1,1[n]

v3,0[n]

v3,1[n]

H1(z)

z-(N-1)/2

Q1 = (N1 – 1)/2
Q2 = ceil((N2 – 1)/4)

z-Q1

z-Q2

z-Q2

z-1

z-1

 L
<z>

H2,1(z)

x[n]

v0,0[n]

v2,0[n]

u0[n]

u1[n]

α0[n]

α-0.75[n]

α-0.5[n]

α-0.25[n]z-1v0,1[n]

v1[n]

v2,1[n]

v3[n]

z-1

H0(z)

z-D1

H2,0(z)

z-D3

z-D3

H2,0(z)

H2,1(z)

z-2

v0[n]

v2[n]

x[n] xu[n]

x[n]

H1(z)

H0(z)

z-1

xu[n]

 2
<z>

 2
<z>

x[n]

H1(z2)

H0(z2)

z-1

 2
<z>

xu[n]

a)

b)

c)

z-N1

H0(z)

z-N1

H0(z)

x[n]

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

z-1

HFD1(z)

b)

HFD0(z)

HFD1(z)α0[n]

α-0.5[n]

β1[n]

z-1

HFD0(z)

HFD1(z)

α0[n]

α-0.5[n]

β0[n]

a)

z-1

Figure B.1: Single-Sampling-Rate FIR Halfband Cascade, L = 4

thus becomes sub-filters H2,0(z) and H2,1(z), both of which are of length N2,X = N2/2 = 4

coefficients and delay D2,X = (N2,X − 1)/2 = 1.5 samples. Since H3,X(z) is actually a pure

integer delay path, its decomposition is merely a reduction in delay from 3 samples to 1.5

samples. However, since it is not possible to implement a pure half-sample of delay, the

delay is rounded up to 2 samples.

Following further decomposition, streams u0[n] and u1[n] are each connected to their own

chain of filters consisting of H2,0(z), H2,1(z) and the delay path H3,X(z). This results in a

total of 6 output streams. The output of sub-filters H2,0(z), H2,1(z) and the delay path

H3,X(z) to which stream u0[n] is connected are denoted as streams v0,0[n], v0,1[n], and v1[n],

respectively. The output of sub-filters H2,0(z), H2,1(z) and the delay path H3,X(z) to which

stream u1[n] is connected are denoted as streams v2,0[n], v2,1[n], and v3[n], respectively.

Although 6 output streams are present, the desired output of the structure is L = 4

streams that are fractionally delayed by a factor of 1/L relative to each other. While not

mandatory, it is convenient to define these streams as having 0, -0.25, -0.5, and -0.75 samples,

respectively, relative to a given integer delay. At this point, the total delay along each path

111

is follows:

Dtot
0,0[n] = 25.5 + 1.5 = 27 samples

Dtot
0,1[n] = 25.5 + 1.5 = 27 samples

Dtot
1 [n] = 25.5 + 2 = 27.5 samples

Dtot
2,0[n] = 25 + 1.5 = 26.5 samples

Dtot
2,1[n] = 25 + 1.5 = 26.5 samples

Dtot
3 [n] = 25 + 2 = 27 samples

Upon examining Figure B.1, it is clear that streams v1[n] and v3[n] are streams with

0.5 and 0 samples of fractional delay, respectively. Adding stream v0,1[n] to stream v2,0[n]

produces stream v2[n], which is fractionally delayed by a factor of 0.75 samples. Inserting

an integer delay along the path of stream v2,1[n] and adding it to stream v0,0[n] produces

stream v0[n], which is fractionally delayed by a factor of 0.25 samples.

Accounting for the delays introduced by the adders, the total delay along each path is

now:

Dtot
0 [n] = 28.25 samples

Dtot
1 [n] = 27.5 samples

Dtot
2 [n] = 27.75 samples

Dtot
3 [n] = 27 samples

Finally, by strategically inserting integer delays along select paths as shown in Figure B.1,

the output streams can be reorganized such that they are fractionally delayed by 0, -0.25,

-0.5, and -0.75 samples relative to an integer delay of 33 samples. The paths are relabelled

to match this new scheme using the notation αX , where X is the relative fractional delay.

α0 = v3[n]z−2

α−0.25 = v2[n]z−1

α−0.5 = v1[n]z−1

α−0.75 = v0

112

Thus, the final delay along each path is:

Dtot
0 [n] = 29 samples

Dtot
−0.25[n] = 28.75 samples

Dtot
−0.5[n] = 28.5 samples

Dtot
−0.75[n] = 28.25 samples

113

References

[1] E. S. Smith, “The emergence of cable TV: A look at the evolution of a revolution,” in

Proc. IEEE, vol. 58, pp. 967–982, July 1970.

[2] E. Champy, “Broadband wireless connectivity,” in Proc. Wescon’97, (Nashua, NH,

USA), pp. 200–205, Nov. 1997.

[3] W. S. Ciciora, “An introduction to cable television in the United States,” IEEE LCS

Magazine, vol. 1, pp. 19–25, Feb. 1990.

[4] J. S. Light, “Before the internet, there was cable,” IEEE Annals of the History of

Computing, vol. 25, pp. 94–96, Apr. 2003.

[5] E. K. Smith, “Pilot two-way CATV systems,” IEEE Transactions on Communications,

vol. 23, pp. 111–120, Jan. 1975.

[6] V. Brugliera, “History of compatibility between cable systems and receivers,” in

Proc. IEEE International Conference on Consumer Electronics, (Rosemont, IL, USA),

pp. 186–187, Nov. 1994.

[7] J. M. Cioffi, “Lighting up copper,” IEEE Communications Magazine, vol. 49, pp. 30–43,

May 1990.

[8] CableLabs, “DOCSIS 1.0 Radio Frequency Interface Specification, SP-RFI-C01-

011119,” Nov. 2001.

[9] CableLabs, “DOCSIS 1.1 Radio Frequency Interface Specification, CM-SP-RFIv1.1-

C01-050907,” Sept. 2005.

[10] CableLabs, “DOCSIS 2.0 + IPv6 Cable Modem Specification, CM-SP-DOCSIS2.0-IPv6-

I07-130404,” Apr. 2013.

[11] CableLabs, “DOCSIS 3.0 Physical Layer Specification, CM-SP-PHYv3.0-I11-130808,”

Dec. 2008.

114

[12] CableLabs, “DOCSIS 3.1 Physical Layer Specification, CM-SP-PHYv3.1-I04-141218,”

Dec. 2014.

[13] H. Yin and S. Alamouti, “OFDMA: A broadband wireless access technology,” in Sarnoff

Symposium, IEEE, (Princeton, NJ, USA), pp. 1–4, Nov. 2006.

[14] C. Ciochina and H. Sari, “A review of OFDMA and single-carrier FDMA and some

recent results,” IEEE Advances in Electronics and Telecommunications, vol. 1, pp. 35–

40, Apr. 2010.

[15] CableLabs, “DOCSIS 3.1 MAC and Upper Layer Protocols Interface Specification, CM-

SP-MULPIv3.1-I04-141218,” Dec. 2014.

[16] Altera, “FFT MegaCore Function User Guide,” Dec. 2014.

[17] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, ch. 2, pp. 22–24.

Cambridge University Press, 2005.

[18] M. Morelli, C. C. J. Kuo, and M.-O. Pun, “Synchronization techniques for orthogonal

frequency division multiple access (OFDMA): a tutoral review,” in Proc. IEEE, vol. 95,

pp. 1394–1427, July 2007.

[19] T. Schmidl and D. Cox, “Robust frequency and timing synchronization for ofdm,” IEEE

Trans. Commun., vol. 45, pp. 1613–1621, Dec. 1997.

[20] D. Large and J. Farmer, Broadband Cable Acess Networks: The HFC Plant, ch. 7,

pp. 200–201. Morgan Kaufmann, 1999.

[21] B. Berscheid, FPGA-Based DOCSIS Upstream Demodulation. PhD thesis, University

of Saskatchewan, Saskatoon, SK, Canada, July 2011.

[22] X. Dai, “Carrier frequency offset estimation and correction for OFDMA uplink,” IET

Communications, vol. 1, pp. 273–281, Apr. 2007.

[23] K. K. Parhi and T. Nishitami, eds., Digital Signal Processing for Multimedia Systems.

New York, NY, USA: Marcel Dekker Inc., 1999.

115

[24] D. Large and J. Farmer, Broadband Cable Acess Networks: The HFC Plant, ch. 2, p. 37.

Morgan Kaufmann, 1999.

[25] S. Ovadia, Broadband Cable TV Acess Networks: From Technologies to Applications.

Upper Saddle River, NJ, USA: Prentice Hall, 2001.

[26] R. Osso, Handbook of Emerging Communications Technologies: The Next Decade, ch. 5,

p. 94. CRC Press, 2000.

[27] F. Wang, G. Yang, W. W. Fang, and J. Liu, “Statistical analysis of the effective band-

width of fm hd radio,” in Control Engineering and Information Systems (Z. Liu, ed.),

pp. 453–457, CRC Press, 2015.

[28] H. H. Nguyen and E. Shwedyk, A First Course in Digital Communications, ch. 3,

pp. 104–106. Cambridge University Press, 2009.

[29] J. Diaz-Carmona and G. J. Dolecek, “Fractional delay filters,” in Applications of MAT-

LAB in Science and Engineering (T. Michaowski, ed.), ch. 12, InTech, 2011.

[30] V. Valimaki and T. T. Laakso, “Principles of fractional delay filters,” in Proc.

ICASSP’00, (Istanbul, Turkey), pp. 1–4, June 2000.

[31] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the unit delay:

Tools for fractional delay filter design,” IEEE Signal Processing Magazine, vol. 13,

pp. 30–60, Jan. 1996.

[32] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,

ch. 7, pp. 465–486. Upper Saddle River, NJ, USA: Prentice Hall, second ed., 1999.

[33] E. Hermanowicz, “Explicit formulas for weighting coefficients of maximally flat tunable

FIR delayers,” Electronic Letters, vol. 28, pp. 1936–1937, Sept. 1992.

[34] F. H. H. Johansson, “Polyphase decomposition of digital fractional-delay filters,” Signal

Processing Letters, IEEE, vol. 22, pp. 1021–1025, Aug. 2015.

[35] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and

applications: a tutorial,” in Proc. IEEE, pp. 56–93, Jan. 1990.

116

[36] G. Ramirez-Conejo, J. D. Carmona, A. Ramirez-Agundis, A. Padilla-Medina, and

J. Delgado-Frias, “FPGA implementation of adjustable wideband fractional delay FIR

filters,” in International Conference on Reconfigurable Computing and FPGAs (ReCon-

Fig), (Quintana Roo, Mexico), pp. 406–411, Dec. 2010.

[37] H. Johansson, O. Gustafsson, K. Johansson, and L. Wanhammar, “Adjustable

fractional-delay FIR filters using the Farrow structure and multirate techniques,” in

APCCAS’06, (Singapore), pp. 1055–1058, Dec. 2006.

[38] F. J. Harris, Multirate Signal Processing for Communications Systems, ch. 8. Upper

Saddle River, NJ, USA: Prentice Hall, 2004.

[39] M. S. El-Tanay and Y. Wu, “Impact of phase noise on the performance of OFDM

systems over frequency selective channels,” in Proc. Wescon’97, vol. 3, (Phoenix, NH,

USA), pp. 1802–1806, May 1997.

117

