2 research outputs found

    Performance Investigation of High-Speed Train OFDM Systems under the Geometry-Based Channel Model

    Get PDF
    The high-speed of train (HST) in combination with the high carrier frequency of HST systems leads to the severe inter carrier interference (ICI) in the HST orthogonal frequency division multiplexing (HST-OFDM) systems. To avoid the complexity in OFDM receiver design for ICI eliminations, the OFDM system parameters such as symbol duration, signal bandwidth, and the number of subcarriers should be chosen appropriately. This paper aims to propose a process of HST-OFDM system performance investigation to determine these parameters in order to enhance spectral efficiency and meet a given quality-of-service (QoS) level. The signal-to-­interference-­plus-­noise ratio (SINR) has been used as a figure of merit to analyze the system performance instead of signal-to-noise ratio (SNR) as most of recent research studies. Firstly, using the non-stationary geometry-based stochastic HST channel model, the SINR of each subcarrier has been derived for different speeds of the train, signal bandwidths, and number of subcarriers. Consequently, the system capacity has been formulated as the sum of all the single channel capacity from each sub-carrier. The constraints on designing HST-OFDM system parameters have been thoughtfully analyzed using the obtained expressions of SINR and capacity. Finally, by analyzing the numerical results, the system parameters can be found for the design of HST-OFDM systems under different speeds of train. The proposed process can be used to provide hints to predict performance of HST communication systems before doing further high cost implementations as hardware designs

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes
    corecore