1,495 research outputs found

    Time Reversal with Post-Equalization for OFDM without CP in Massive MIMO

    Full text link
    This paper studies the possibility of eliminating the redundant cyclic prefix (CP) of orthogonal frequency division multiplexing (OFDM) in massive multiple-input multiple-output systems. The absence of CP increases the bandwidth efficiency in expense of intersymbol interference (ISI) and intercarrier interference (ICI). It is known that in massive MIMO, different types of interference fade away as the number of base station (BS) antennas tends to infinity. In this paper, we investigate if the channel distortions in the absence of CP are averaged out in the large antenna regime. To this end, we analytically study the performance of the conventional maximum ratio combining (MRC) and realize that there always remains some residual interference leading to saturation of signal to interference (SIR). This saturation of SIR is quantified through mathematical equations. Moreover, to resolve the saturation problem, we propose a technique based on time-reversal MRC with zero forcing multiuser detection (TR-ZF). Thus, the SIR of our proposed TR-ZF does not saturate and is a linear function of the number of BS antennas. We also show that TR-ZF only needs one OFDM demodulator per user irrespective of the number of BS antennas; reducing the BS signal processing complexity significantly. Finally, we corroborate our claims as well as analytical results through simulations.Comment: 7 pages, 3 figure

    Channel Acquisition for Massive MIMO-OFDM with Adjustable Phase Shift Pilots

    Get PDF
    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.Comment: 15 pages, 4 figures, accepted for publication in the IEEE Transactions on Signal Processin

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure
    corecore