1,752,191 research outputs found
Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging
Subsoil organic carbon (OC) is generally lower in content and more heterogeneous than topsoil OC, rendering it difficult to detect significant differences in subsoil OC storage. We tested the application of laboratory hyperspectral imaging with a variety of machine learning approaches to predict OC distribution in undisturbed soil cores. Using a bias-corrected random forest we were able to reproduce the OC distribution in the soil cores with very good to excellent model goodness-of-fit, enabling us to map the spatial distribution of OC in the soil cores at very high resolution (~53 × 53 µm). Despite a large increase in variance and reduction in OC content with increasing depth, the high resolution of the images enabled statistically powerful analysis in spatial distribution of OC in the soil cores. In contrast to the relatively homogeneous distribution of OC in the plough horizon, the subsoil was characterized by distinct regions of OC enrichment and depletion, including biopores which contained ~2–10 times higher SOC contents than the soil matrix in close proximity. Laboratory hyperspectral imaging enables powerful, fine-scale investigations of the vertical distribution of soil OC as well as hotspots of OC storage in undisturbed samples, overcoming limitations of traditional soil sampling campaigns
Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo
Background
Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model.
Methods
OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis.
Results
Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae.
Conclusions
This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo
Suns-V characteristics of high performance kesterite solar cells
Low open circuit voltage () has been recognized as the number one
problem in the current generation of CuZnSn(Se,S) (CZTSSe) solar
cells. We report high light intensity and low temperature Suns-
measurement in high performance CZTSSe devices. The Suns- curves
exhibit bending at high light intensity, which points to several prospective
limiting mechanisms that could impact the , even at 1 sun for
lower performing samples. These V limiting mechanisms include low bulk
conductivity (because of low hole density or low mobility), bulk or interface
defects including tail states, and a non-ohmic back contact for low carrier
density CZTSSe. The non-ohmic back contact problem can be detected by
Suns- measurements with different monochromatic illumination. These
limiting factors may also contribute to an artificially lower -
diode ideality factor.Comment: 9 pages, 9 figures, 1 supplementary materia
Enrichment of organic carbon in sediment transport by interrill and rill erosion processes
Erosion and loss of organic carbon (OC) result in degradation of the soil surface. Rill and interrill erosion processes on a silt loam soil were examined in laboratory rainfall and flume experiments. These experiments showed that rill and interrill erosion processes have contrasting impacts on enrichment of OC in transported sediment. Rill erosion was found to be nonselective, while for interrill erosion the enrichment ratio of OC, EROC, varied between 0.9 and 2.6 and was inversely related to the unit sediment discharge. At unit sediment discharge values >0.0017 kg s(-1) m(-1), the EROC remained equal to 1. The enrichment process was not influenced by raindrop impact. Enrichment of OC by "aggregate stripping" was found to be unimportant in our study. This was attributed to the low aggregate stability of the soil and the equal distribution of OC within the different soil aggregate classes
Approximating the Termination Value of One-Counter MDPs and Stochastic Games
One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs)
are 1-player, and 2-player turn-based zero-sum, stochastic games played on the
transition graph of classic one-counter automata (equivalently, pushdown
automata with a 1-letter stack alphabet). A key objective for the analysis and
verification of these games is the termination objective, where the players aim
to maximize (minimize, respectively) the probability of hitting counter value
0, starting at a given control state and given counter value. Recently, we
studied qualitative decision problems ("is the optimal termination value = 1?")
for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and
coNP, respectively). However, quantitative decision and approximation problems
("is the optimal termination value ? p", or "approximate the termination value
within epsilon") are far more challenging. This is so in part because optimal
strategies may not exist, and because even when they do exist they can have a
highly non-trivial structure. It thus remained open even whether any of these
quantitative termination problems are computable. In this paper we show that
all quantitative approximation problems for the termination value for OC-MDPs
and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon >
0, we can compute a value v that approximates the value of the OC-SSG
termination game within additive error epsilon, and furthermore we can compute
epsilon-optimal strategies for both players in the game. A key ingredient in
our proofs is a subtle martingale, derived from solving certain LPs that we can
associate with a maximizing OC-MDP. An application of Azuma's inequality on
these martingales yields a computable bound for the "wealth" at which a "rich
person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011,
invited for submission to Information and Computatio
Dilatancy relation for overconsolidated clay
A distinct feature of overconsolidated (OC) clays is that their dilatancy behavior is dependent on the degree of overconsolidation. Typically, a heavily OC clay shows volume expansion, whereas a lightly OC clay exhibits volume contraction when subjected to shear. Proper characterization of the stress-dilatancy behavior proves to be important for constitutive modeling of OC clays. This paper presents a dilatancy relation in conjunction with a bounding surface or subloading surface model to simulate the behavior of OC clays. At the same stress ratio, the proposed relation can reasonably capture the relatively more dilative response for clay with a higher overconsolidation ratio (OCR). It may recover to the dilatancy relation of a modified Cam-clay (MCC) model when the soil becomes normally consolidated (NC). A demonstrative example is shown by integrating the dilatancy relation into a bounding surface model. With only three extra parameters in addition to those in the MCC model, the new model and the proposed dilatancy relation provide good predictions on the behavior of OC clay compared with experimental data
Dimensions of Organisational Culture in Quantity Surveying Firms in Nigeria
The functionalist paradigm of organisational culture (OC) views culture as a variable subject to conscious manipulation and control in order to solve organisational challenges. Therefore, this paper provides information on how OC is a solution to the challenges in Quantity Surveying firms (QSFs). This was achieved by eliciting the dimensions of OC in forty two QSFs in Lagos, Nigeria, which are the business, people and external environment dimensions. The paper concludes that OC is a relevant solution to the identity and management related challenges in QSFs. Specifically, the paper informs on the implications of business and people dimensions of OC as a solution to the identity challenges, as well as on the implication of the external environment dimension of OC to the management challenges. Based on the findings, practical implications and recommendations were directed at the management and employees QSs in QSFs and Quantity Surveying researchers
Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography
Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow
Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model
Accurate imaging of the ischemic penumbra is a prerequisite for acute clinical stroke research. T2* magnetic resonance imaging (MRI) combined with an oxygen challenge (OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. However, inducing OC with 100% O2 induces sinus artefacts on human scans and influences cerebral blood flow (CBF), which can affect T2* signal. Therefore, we investigated replacing 100% O2 OC with 40% O2 OC (5 minutes 40% O2 versus 100% O2) and determined the effects on blood pressure (BP), CBF, tissue pO2, and T2* signal change in presumed penumbra in a rat stroke model. Probes implanted into penumbra and contralateral cortex simultaneously recorded pO2 and CBF during 40% O2 (n=6) or 100% O2 (n=8) OC. In a separate MRI study, T2* signal change to 40% O2 (n=6) and 100% O2 (n=5) OC was compared. Oxygen challenge (40% and 100% O2) increased BP by 8.2% and 18.1%, penumbra CBF by 5% and 15%, and penumbra pO2 levels by 80% and 144%, respectively. T2* signal significantly increased by 4.56%±1.61% and 8.65%±3.66% in penumbra compared with 2.98%±1.56% and 2.79%±0.66% in contralateral cortex and 1.09%±0.82% and −0.32%±0.67% in ischemic core, respectively. For diagnostic imaging, 40% O2 OC could provide sufficient T2* signal change to detect penumbra with limited influence in BP and CBF
- …
