5,539 research outputs found

    Federated Identity and Access Management for the Internet of Things

    Get PDF

    Analysing the Security of Google's implementation of OpenID Connect

    Get PDF
    Many millions of users routinely use their Google accounts to log in to relying party (RP) websites supporting the Google OpenID Connect service. OpenID Connect, a newly standardised single-sign-on protocol, builds an identity layer on top of the OAuth 2.0 protocol, which has itself been widely adopted to support identity management services. It adds identity management functionality to the OAuth 2.0 system and allows an RP to obtain assurances regarding the authenticity of an end user. A number of authors have analysed the security of the OAuth 2.0 protocol, but whether OpenID Connect is secure in practice remains an open question. We report on a large-scale practical study of Google's implementation of OpenID Connect, involving forensic examination of 103 RP websites which support its use for sign-in. Our study reveals serious vulnerabilities of a number of types, all of which allow an attacker to log in to an RP website as a victim user. Further examination suggests that these vulnerabilities are caused by a combination of Google's design of its OpenID Connect service and RP developers making design decisions which sacrifice security for simplicity of implementation. We also give practical recommendations for both RPs and OPs to help improve the security of real world OpenID Connect systems

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US
    corecore