6 research outputs found

    Entwerfen Entwickeln Erleben in Produktentwicklung und Design 2019 - 1

    Get PDF
    Die Konferenz Entwerfen Entwickeln Erleben hat bereits zum vierten Mal ein einzigartiges Konferenz- und Ausstellungsformat zum Austausch zwischen Wissenschaft und Praxis in Produktentwicklung und Design angeboten. Am 27. und 28. Juni 2019 ermöglichten die Professuren Konstruktionstechnik/CAD und Technisches Design der Technischen Universität Dresden in Kooperation mit weiteren Partnern den 200 Teilnehmenden die fachübergreifende Diskussion zu den Themen • Interdisziplinärer Entwurf adaptiver Produktsysteme, • Entwickeln vernetzter Anwendungen für Industrie 4.0, • Konstruktion mit hybriden Werkstoffen und für additive Fertigungsprozesse, • Entwicklungsunterstützung durch Produktdatenmanagement und VR/AR, • Design nutzerzentriertem Erleben komplexer Produkt-Service-Systeme.:Quo vadis Digitalisierung: Die digitale Engineering-Kette und Ihre nachhaltige Wirkung auf die Wertschöpfung Heinz Simon Keil 9 Augmented Reality in der Produktvalidierung: Potenziale und Grenzen in frühen Entwicklungsphasen Jonas Reinemann, Joshua Fahl, Tobias Hirschter und Albert Albers 33 Konzept zur Verbesserung des realitätsgetreuen, visuellen Erlebens in virtuellen Umgebungen durch Eye-Tracking Benjamin Gerschütz, Marius Fechter, Benjamin Schleich und Sandro Wartzack 51 Mixed Reality Assistenzsystem zur visuellen Qualitätsprüfung mit Hilfe digitaler Produktfertigungsinformationen Stefan Adwernat und Matthias Neges 67 Ein Beitrag zur Verwendung von Technologien der Virtuellen Realität für Design-Reviews Margitta Pries, Ute Wagner, Johann Habakuk Israel und Thomas Jung 75 Eingriff in die Privatsphäre der Endanwender durch Augmented Reality-Anwendungen Matthias Neges und Jan Luca Siewert 87 Virtual Prototyping als agile Feedback-Methode für frühe Produktentwicklungsphasen Manuel Dudczig 97 aHa – Der adaptive Handgriff der Zukunft Paula Laßmann, Jonathan Kießling, Stephan Mayer, Benedikt Janny und Thomas Maier 107 Design-Education: Die Siemens HMI-Design Masterclass Oliver Gerstheimer, Romy Kniewel, Sebastian Frei und Felix Kranert 125 Nutzungsaspekte von Head-Mounted-Displays in industriellen Umgebungen Maximilian Peter Dammann, Martin Gebert und Ralph Stelzer 141 Selbstlernende Assistenzsysteme für Maschinenbediener Andre Schult, Lukas Oehm, Sebastian Carsch, Markus Windisch und Jens-Peter Majschak 159 Untersuchung der Mensch-Maschine-Interaktion bei der Werkstückspannung beim Vertikal-Drehen Volker Wittstock, Patrick Puschmann, Adrian Albero Rojas, Matthias Putz und Heinrich Mödden 173 Entwicklungsassistenz zum Entwurf Innermaschineller Verfahren für Verarbeitungsmaschinen Paul Weber, Lukas Oehm, Sebastian Carsch, Andre Schult und Jens-Peter Majschak 185 Gestaltung nutzerzentrierter Assistenzen im Produktdatenmanagement Stephan Scheele und Frank Mantwill 201 Model-Based Engineering für die Automatisierung von Validierungsaktivitäten am Beispiel Fahrerassistenzsysteme Constantin Mandel, Sebastian Lutz, Olivia Rau, Matthias Behrendt und Albert Albers 221 Das Potenzial 3D-gedruckter Gradientenwerkstoffe für pharmazeutische Applikationen Tobias Flath, Alexandra Springwald, Michaela Schulz-Siegmund, Michael C. Hacker und Peter Schulze 239 Feature-Baukasten für FDM-Druckverfahren Franz Wieck, Tim Katzwinkel und Manuel Löwer 247 Gestalten mit hybriden Materialien – Additive Fertigung für neuartige, kundenindividuelle Stichschutzbekleidung Dustin Ahrendt, Sybille Krzywinski, Enric Justo i Massot und Jens Krzywinski 265 Individuelle Produktgestaltung mittels funktionsintegrierten AM-Knoten und Profilen am Beispiel eines Batteriekastens Richard Kordaß und Christian Arved Stürmer 281 Einführung in die Produktentwicklung im Rahmen eines Schülerlabors am Beispiel des PROJECT 10|2018 Nico Herzberg, Laura Marschner und Florian Schröder 299 Einflussfaktoren in der standortverteilten Produktgenerations-entwicklung – Eine literaturbasierte Momentaufnahme Katharina Duehr, David Kopp, Benjamin Walter, Markus Spadinger und Albert Albers 309 Szenarien verbinden Gerhard Glatzel und Mathias Wiehle 327 Iterationsarten und deren Auslöser in der Frühen Phase der PGE – Produktgenerationsentwicklung Miriam Wilmsen, Markus Spadinger, Albert Albers, Cong Minh Nguyen und Jonas Heimicke 339 Building Information Modeling (BIM) für Bahn-Bauwerke – von Datenakquisition bis Virtueller Realität Markus Färber, Thomas Preidel, Markus Schlauch, Bernhard Saske, Adrian Bernhardt, Michael Reeßing, Steffen Cersowsky und Ronny Krüger 355 Effiziente Produktion und Wartung durch die Industrie 4.0 – Anwendung Hashem Badra und Jivka Ovtcharova 371 Herausforderungen klassischer Maschinenelemente im nicht-elektrischen Explosionsschutz Sabrina Herbst, Thomas Guthmann und Frank Engelmann 383 Ein hybrider Ansatz für Festigkeitsnachweise von multiskaligen Strukturen Hans-Peter Prüfer 399 Interdisziplinäre Design Methodik Martin Eigner, Thomas Dickopf und Hristo Apostolov 41

    Konzeption und Entwicklung eines Robot Cognition Processors fĂĽr adaptive Demontageanwendungen

    Get PDF
    Im Rahmen der perspektivischen Einführung einer Kreislaufwirtschaft sind ökonomische und ökologische Aspekte entscheidend für die Attraktivität der Umsetzung in beteiligten Wirtschaftsunternehmen. Die Demontage stellt innerhalb von Verwertungsprozessen in diesen Konzepten einen wichtigen Schritt dar, der aufgrund von hoher Varianten- und Zustandsvielfalt überwiegend manuell ausgeführt wird. Diese Forschungsarbeit untersucht die Möglichkeiten der nachhaltigen Verbesserung des Demontageprozesses durch selektive (Teil-)Automatisierung mit Hilfe eines Konzeptes aus dem Bereich der kognitiven Robotik. Es wird dabei auf Grundlage der Anforderungen aus realen Demontageprozessen ein System entwickelt, das in einer agentenbasierten Modulstruktur die Funktionsumfänge bietet, die für eine autonome, flexible Demontageplanung unter Berücksichtigung von Produkt- und Lebenszyklusdaten erforderlich sind und die effiziente Ausführung der Demontageoperationen im Rahmen einer Mensch-Roboter-Kollaboration erlauben. Grundlage für die entwickelten Module stellt ein standardisiertes Informationsmanagement-Konzept dar, welches die Anlagenebene der Demontage technisch mit allen beteiligten Stakeholdern der zirkulären Wertschöpfungskette verknüpft. Mit Hilfe von Industrie 4.0 Technologien, wie beispielsweise dem Einsatz von KI-unterstützten Entscheidungssystemen oder einer intelligenten Bilderkennungseinheit können so produktindividuelle Verwertungsszenarien innerhalb der Kreislaufwirtschaft bestimmt werden, welche die Schlüsselposition der Demontage am Beginn der zirkulären Wertschöpfungskette bestmöglich nutzen. Die Untersuchungen des Systemkonzeptes am Beispiel der Moduldemontage von Elektrofahrzeug-Batterien zeigen, dass mit dem entwickelten Konzept eine Verbesserung gegenüber manueller Demontageoperationen erzielt werden kann. Die Verknüpfung der Systemeinheiten lässt sich durch die verwendeten Interoperabilitätsstandards skalieren und erlaubt so auch den industriellen Einsatz. Durch bidirektionale Kommunikationsstrukturen wird gezeigt, dass es möglich ist validierte Prozessinformationen aus einer Demontageeinheit an anderen Stellen zu nutzen. Dies reduziert den effektiven Aufwand im Umgang mit einer hohen Variantenvielfalt. Die Verwendung der entwickelten Modulkonzepte ist grundsätzlich auch in angrenzenden Feldern möglich, erfordert jedoch weitere Entwicklungs- und Abstimmungsarbeit. Aus den Ergebnissen dieser Konzeptentwicklung folgen zahlreiche Weiterentwicklungs- und Anwendungspotenziale für Robotiksysteme im Bereich der kreislaufwirtschaftlichen Verwertungsprozesse. Vor dem Hintergrund der Notwendigkeit der Rückgewinnung kritischer Elemente und einer effizienten Ressourcennutzung durch höherwertige (Teil-)Nutzungs- und Verwertungsoptionen, ist der Einsatz hierauf aufbauender Konzepte eine lohnenswerte Zukunftsperspektive.In the pursuance of a Circular Economy, both economic and ecological aspects are crucial for the implementation in private companies. The disassembly process itself is a very important step in end-oflife utilization and because of the high variance of products and their conditions it is mainly carried out manually. This work investigates the possibilities of a sustainable improvement of such processes by selective automation with cognitive robotics. Based on requirements of real disassembly cases, a robot system is conceptualized and developed which is able to facilitate an autonomous, flexible disassembly planning while taking both product and lifecycle data into account. Furthermore, the execution of the disassembly process in the concept is carried out as a human-machine-collaboration. The overall foundation of the system is an information management concept which connects shopfloor level disassembly with all stakeholders within the circular value chain. Using Industry 4.0 technologies, for instance AI decision systems or an intelligent image recognition, part-individual utilization scenarios can be defined this way. The investigation of the system concept on the case study of module disassembly of electric vehicle batteries shows that automation is both more effective and efficient in comparison to manual operations. Interfaces are highly scalable because of the interoperability standards used, preparing the concept to be implemented in industry. Moreover, bidirectional communication pipelines enable the exchange of valid process knowledge between several stakeholders, reducing the effort of dealing with a high variance of products and conditions. Transfer of the concept to other fields of industry or recycling operations is possible but requires further development for the actual use case. Conclusively, the concept developed opens up a manifold of different application scenarios for cognitive robotics in the Circular Economy domain. Keeping the necessity of recovering critical elements and the reuse of valuable components in mind, an implementation of future concepts based on this approach is a perspective worthwhile

    Foundations and applications of human-machine-interaction

    Get PDF
    Der vorliegende Tagungsband zur 10. Berliner Werkstatt Mensch-Maschine-Systeme gibt einen Einblick in die aktuelle Forschung im Bereich der Mensch-Maschine- Interaktion. Einen besonderen Fokus stellt das Wechselspiel von Grundlagenforschung und anwendungsbezogener Forschung dar, was sich im breiten Themenspektrum widerspiegelt, welches von theoretischen und methodischen Betrachtungen bis hin zu anwendungsnahen Fragestellungen reicht. Dabei finden Inhalte aus allen Phasen des Forschungsprozesses Beachtung, sodass auch im Rahmen der 10. Berliner Werkstatt MMS wieder sowohl neue Untersuchungskonzepte als auch abschlieĂźende Befunde diskutiert werden. Zentrale Themengebiete sind u. a. Fahrer-Fahrzeug-Interaktion, Assistenzsysteme, User Experience, Usability, Ubiquitous Computing, Mixed & Virtual Reality, Robotics & Automation, Wahrnehmungsspezifika sowie Psychophysiologie und Beanspruchung in der Mensch-Maschine-Interaktion.The proceedings of the 10th Berlin Workshop Human-Machine-Systems provide an insight into the current research in the field of human-machine-interaction. The main focus lies on the interplay between basic and applied research, which is reflected in the wide range of subjects: from theoretical and methodological issues to application oriented considerations. Again all stages of the research process are represented in the contributions of the 10th Berlin Workshop HMS. This means new research concepts as well as final results are subject of this volume. Central topics include driver-vehicleinteraction, assistance systems, user experience, usability, ubiquitous computing, mixed and virtual reality, robotics & automation, perception specifics, as well as psychophysiology and workload in human-machine-interaction

    Collaborative Human-Machine Communication: User- and situation-oriented design of automotive Speech Dialog Systems

    Get PDF
    Diese Arbeit adressiert die Implementation zwischenmenschlicher Dialogprinzipien im Rahmen der Gestaltung automotiver Sprachdialogsystemen (SDS). Der Transfer der kollaborativen Strategien, insbesondere die kontinuierliche, nutzer- und situationsabhängige Vermittlung von Feedback soll Gegenstand von empirischen Untersuchungen sein. Obwohl in den letzten Jahrzehnten deutliche Verbesserungen der Spracherkennungstechnologie erreicht werden konnten, übernehmen aktuelle SDS die kooperative Verantwortung des Empfängers, dem Sprecher Indizien über die eigenen Verstehensprozesse zu präsentieren und den gemeinsamen Aufwand zu minimieren, nur unzureichend. Die vorliegende Dissertation diskutiert nicht-technische Lösungsansätze, die die Anpassung des Systemverhaltens an bestehende Kommunikationsprozesse vorsehen, um die Koordination der Wissensstände zwischen Mensch und Maschine zu ermöglichen. Drei verschiedene Grounding-Elemente wurden auf die Mensch-Maschine-Interaktion angewendet. Zunächst wurde ein System implementiert, welches visuelle Repräsentationen der Dialoginhalte und -zustände bot. In einer zweiten Umsetzung wurde ein flexibles System Grounding Criterion in Anlehnung an menschliches Rückfrageverhalten umgesetzt, so dass das System nur dann eine Bestätigungsanfrage erbat, wenn es sich unsicher war. Das dritte System adressierte Angleichungsprozesse in dem die Systemausgabe syntaktisch und lexikalisch an die Nutzereingabe angepasst wurde. Um den Einfluss dieser drei Umsetzungen auf Gebrauchstauglichkeitsbeurteilungen zu untersuchen, wurden umfangreiche Nutzerstudien im Fahrsimulator durchgeführt. Die Ergebnisse der empirischen Untersuchungen zeigen, dass die Anpassung von SDS an bestehende Kommunikationsstrategien zu erhöhter Nutzerzufriedenheit führen kann. Die Implementation eines flexiblen Grounding Criterions stellte dabei den erfolgreichsten Transfer von zwischenmenschlichen Dialogstrategien auf den Mensch-Maschine-Dialog dar.This work addresses the evaluation of speech dialog systems (SDS) that make use of collaborative strategies from human dialog by providing continuous and appropriate feedback whilst showing adaptive interaction structures. Users’ experience with today’s spoken dialog systems is characterized by interaction structures which do not meet their expectations. The fact that users feel uncomfortable while interacting with current systems can be explained as failed grounding processes, in which users lack evidence to coordinate their knowledge states with the SDS. This thesis proposes solutions of how to overcome difficulties with in-vehicle speech dialog systems from a non-technical point of view by adapting the system behavior to existing communication strategies. Three different grounding strategies were applied to the human machine dialog. Firstly, a system was implemented that gave visual representation of the dialog content and processes. Secondly, a flexible system grounding criterion was realized, so that the system only asked for confirmation if it was insecure, similar to what humans do. The third implementation was concerned with alignment strategies namely by adapting the system’s output syntactically and lexically towards the users’ input. User studies were conducted to examine the impact of these three implementations on usability ratings. While driving the simulator, subjects were using the different SDS for several tasks concerning the address book. The results of the evaluations show, that adapting the SDS to existing communication strategies can lead to improved user satisfaction despite the persisting shortcomings of state-of-the-art speech technology. The implementation of a flexible grounding criterion, which could enhance the efficiency and effectiveness of the interaction, was thereby the most successful transfer from human communication strategies to human machine dialog

    Jahresbericht 2009 der Fakultät für Informatik

    Get PDF

    Automotive user interfaces for the support of non-driving-related activities

    Get PDF
    Driving a car has changed a lot since the first car was invented. Today, drivers do not only maneuver the car to their destination but also perform a multitude of additional activities in the car. This includes for instance activities related to assistive functions that are meant to increase driving safety and reduce the driver’s workload. However, since drivers spend a considerable amount of time in the car, they often want to perform non-driving-related activities as well. In particular, these activities are related to entertainment, communication, and productivity. The driver’s need for such activities has vastly increased, particularly due to the success of smart phones and other mobile devices. As long as the driver is in charge of performing the actual driving task, such activities can distract the driver and may result in severe accidents. Due to these special requirements of the driving environment, the driver ideally performs such activities by using appropriately designed in-vehicle systems. The challenge for such systems is to enable flexible and easily usable non-driving-related activities while maintaining and increasing driving safety at the same time. The main contribution of this thesis is a set of guidelines and exemplary concepts for automotive user interfaces that offer safe, diverse, and easy-to-use means to perform non-driving-related activities besides the regular driving tasks. Using empirical methods that are commonly used in human-computer interaction, we investigate various aspects of automotive user interfaces with the goal to support the design and development of future interfaces that facilitate non-driving-related activities. The first aspect is related to using physiological data in order to infer information about the driver’s workload. As a second aspect, we propose a multimodal interaction style to facilitate the interaction with multiple activities in the car. In addition, we introduce two concepts for the support of commonly used and demanded non-driving-related activities: For communication with the outside world, we investigate the driver’s needs with regard to sharing ride details with remote persons in order to increase driving safety. Finally, we present a concept of time-adjusted activities (e.g., entertainment and productivity) which enable the driver to make use of times where only little attention is required. Starting with manual, non-automated driving, we also consider the rise of automated driving modes.When cars were invented, they allowed the driver and potential passengers to get to a distant location. The only activities the driver was able and supposed to perform were related to maneuvering the vehicle, i.e., accelerate, decelerate, and steer the car. Today drivers perform many activities that go beyond these driving tasks. This includes for example activities related to driving assistance, location-based information and navigation, entertainment, communication, and productivity. To perform these activities, drivers use functions that are provided by in-vehicle information systems in the car. Many of these functions are meant to increase driving safety or to make the ride more enjoyable. The latter is important since people spend a considerable amount of time in their cars and want to perform similar activities like those to which they are accustomed to from using mobile devices. However, as long as the driver is responsible for driving, these activities can be distracting and pose driver, passengers, and the environment at risk. One goal for the development of automotive user interfaces is therefore to enable an easy and appropriate operation of in-vehicle systems such that driving tasks and non-driving-related activities can be performed easily and safely. The main contribution of this thesis is a set of guidelines and exemplary concepts for automotive user interfaces that offer safe, diverse, and easy-to-use means to perform also non-driving-related activities while driving. Using empirical methods that are commonly used in human-computer interaction, we approach various aspects of automotive user interfaces in order to support the design and development of future interfaces that also enable non-driving-related activities. Starting with manual, non-automated driving, we also consider the transition towards automated driving modes. As a first part, we look at the prerequisites that enable non-driving-related activities in the car. We propose guidelines for the design and development of automotive user interfaces that also support non-driving-related activities. This includes for instance rules on how to adapt or interrupt activities when the level of automation changes. To enable activities in the car, we propose a novel interaction concept that facilitates multimodal interaction in the car by combining speech interaction and touch gestures. Moreover, we reveal aspects on how to infer information about the driver's state (especially mental workload) by using physiological data. We conducted a real-world driving study to extract a data set with physiological and context data. This can help to better understand the driver state, to adapt interfaces to the driver and driving situations, and to adapt the route selection process. Second, we propose two concepts for supporting non-driving-related activities that are frequently used and demanded in the car. For telecommunication, we propose a concept to increase driving safety when communicating with the outside world. This concept enables the driver to share different types of information with remote parties. Thereby, the driver can choose between different levels of details ranging from abstract information such as ``Alice is driving right now'' up to sharing a video of the driving scene. We investigated the drivers' needs on the go and derived guidelines for the design of communication-related functions in the car through an online survey and in-depth interviews. As a second aspect, we present an approach to offer time-adjusted entertainment and productivity tasks to the driver. The idea is to allow time-adjusted tasks during periods where the demand for the driver's attention is low, for instance at traffic lights or during a highly automated ride. Findings from a web survey and a case study demonstrate the feasibility of this approach. With the findings of this thesis we envision to provide a basis for future research and development in the domain of automotive user interfaces and non-driving-related activities in the transition from manual driving to highly and fully automated driving.Als das Auto erfunden wurde, ermöglichte es den Insassen hauptsächlich, entfernte Orte zu erreichen. Die einzigen Tätigkeiten, die Fahrerinnen und Fahrer während der Fahrt erledigen konnten und sollten, bezogen sich auf die Steuerung des Fahrzeugs. Heute erledigen die Fahrerinnen und Fahrer diverse Tätigkeiten, die über die ursprünglichen Aufgaben hinausgehen und sich nicht unbedingt auf die eigentliche Fahraufgabe beziehen. Dies umfasst unter anderem die Bereiche Fahrerassistenz, standortbezogene Informationen und Navigation, Unterhaltung, Kommunikation und Produktivität. Informationssysteme im Fahrzeug stellen den Fahrerinnen und Fahrern Funktionen bereit, um diese Aufgaben auch während der Fahrt zu erledigen. Viele dieser Funktionen verbessern die Fahrsicherheit oder dienen dazu, die Fahrt angenehm zu gestalten. Letzteres wird immer wichtiger, da man inzwischen eine beträchtliche Zeit im Auto verbringt und dabei nicht mehr auf die Aktivitäten und Funktionen verzichten möchte, die man beispielsweise durch die Benutzung von Smartphone und Tablet gewöhnt ist. Solange der Fahrer selbst fahren muss, können solche Aktivitäten von der Fahrtätigkeit ablenken und eine Gefährdung für die Insassen oder die Umgebung darstellen. Ein Ziel bei der Entwicklung automobiler Benutzungsschnittstellen ist daher eine einfache, adäquate Bedienung solcher Systeme, damit Fahraufgabe und Nebentätigkeiten gut und vor allem sicher durchgeführt werden können. Der Hauptbeitrag dieser Arbeit umfasst einen Leitfaden und beispielhafte Konzepte für automobile Benutzungsschnittstellen, die eine sichere, abwechslungsreiche und einfache Durchführung von Tätigkeiten jenseits der eigentlichen Fahraufgabe ermöglichen. Basierend auf empirischen Methoden der Mensch-Computer-Interaktion stellen wir verschiedene Lösungen vor, die die Entwicklung und Gestaltung solcher Benutzungsschnittstellen unterstützen. Ausgehend von der heute üblichen nicht automatisierten Fahrt betrachten wir dabei auch Aspekte des automatisierten Fahrens. Zunächst betrachten wir die notwendigen Voraussetzungen, um Tätigkeiten jenseits der Fahraufgabe zu ermöglichen. Wir stellen dazu einen Leitfaden vor, der die Gestaltung und Entwicklung von automobilen Benutzungsschnittstellen unterstützt, die das Durchführen von Nebenaufgaben erlauben. Dies umfasst zum Beispiel Hinweise, wie Aktivitäten angepasst oder unterbrochen werden können, wenn sich der Automatisierungsgrad während der Fahrt ändert. Um Aktivitäten im Auto zu unterstützen, stellen wir ein neuartiges Interaktionskonzept vor, das eine multimodale Interaktion im Fahrzeug mit Sprachbefehlen und Touch-Gesten ermöglicht. Für automatisierte Fahrzeugsysteme und zur Anpassung der Interaktionsmöglichkeiten an die Fahrsituation stellt der Fahrerzustand (insbesondere die mentale Belastung) eine wichtige Information dar. Durch eine Fahrstudie im realen Straßenverkehr haben wir einen Datensatz generiert, der physiologische Daten und Kontextinformationen umfasst und damit Rückschlüsse auf den Fahrerzustand ermöglicht. Mit diesen Informationen über Fahrerinnen und Fahrer wird es möglich, den Fahrerzustand besser zu verstehen, Benutzungsschnittstellen an die aktuelle Fahrsituation anzupassen und die Routenwahl anzupassen. Außerdem stellen wir zwei konkrete Konzepte zur Unterstützung von Nebentätigkeiten vor, die schon heute regelmäßig bei der Fahrt getätigt oder verlangt werden. Im Bereich der Telekommunikation stellen wir dazu ein Konzept vor, das die Fahrsicherheit beim Kommunizieren mit Personen außerhalb des Autos erhöht. Das Konzept erlaubt es dem Fahrer, unterschiedliche Arten von Kontextinformationen mit Kommunikationspartnern zu teilen. Dies reicht von der abstrakten Information, dass man derzeit im Auto unterwegs ist bis hin zum Teilen eines Live-Videos der aktuellen Fahrsituation. Diesbezüglich haben wir über eine Web-Umfrage und detaillierte Interviews die Bedürfnisse der Nutzer(innen) erhoben und ausgewertet. Zudem stellen wir ein prototypisches Konzept sowie Richtlinien vor, wie künftige Kommunikationsaufgaben im Fahrzeug gestaltet werden sollen. Als ein zweites Konzept betrachten wir zeitbeschränkte Aufgaben zur Unterhaltung und Produktivität im Fahrzeug. Die Idee ist hier, zeitlich begrenzte Aufgaben in Zeiten niedriger Belastung zuzulassen, wie zum Beispiel beim Warten an einer Ampel oder während einer hochautomatisierten (Teil-) Fahrt. Ergebnisse aus einer Web-Umfrage und einer Fallstudie zeigen die Machbarkeit dieses Ansatzes auf. Mit den Ergebnissen dieser Arbeit soll eine Basis für künftige Forschung und Entwicklung gelegt werden, um im Bereich automobiler Benutzungsschnittstellen insbesondere nicht-fahr-bezogene Aufgaben im Übergang zwischen manuellem Fahren und einer hochautomatisierten Autofahrt zu unterstützen
    corecore