197,394 research outputs found
Managing the Black Sea Anchovy Fishery with Nutrient Enrichment and a Biological Invader
Many marine systems are subject to high nutrient loadings together with invasions by exotic species. Devising appropriate management responses is an increasing concern and one that has received relatively little attention from researchers. This paper considers the Black Sea anchovy fishery, which has benefited from the relaxation of a nutrient constraint, but has suffered from competition and predation by an invading comb-jelly (Mnemiopsis leidyi). We examine alternative hypotheses about the mechanism triggering outbreaks of the invader (sea temperatures versus nutrients), and the severity of these outbreaks, to see whether a constant escapement policy might be optimal for this fishery. If nutrient levels serve as the triggering mechanism, we argue a mixed blessing effect may be present, so that the effects of nutrient abatement for the anchovy fishery are uncertain. We specify our model empirically and show that a constant escapement policy would be viable under a scenario of reduced impacts from outbreaks of the invader and that nutrient abatement could be beneficial if nutrients trigger outbreaks.Mnemiopsis leidyi, nutrient abatement, stochastic bioeconomic model, biological invasion, Resource /Energy Economics and Policy, O3, O41, Q2, Q20, Q22,
Evolving Biological Systems: Evolutionary Pressure to Inefficiency
The evolution of quantitative details (i.e. “parameter values”) of biological systems is highly under-researched. We use evolutionary algorithms to co-evolve parameters for a generic but biologically plausible topological differential equation model of nutrient uptake. In our model, evolving cells compete for a finite pool of nutrient resources. From our investigations it emerges that the choice of values is very important for the properties of the biological system. Our analysis also shows that clonal populations that are not subject to competition from other species best grow at a very slow rate. However, if there is co-evolutionary pressure, that is, if a population of clones has to compete with other cells, then the fast growth is essential, so as not to leave resources to the competitor. We find that this strategy, while favoured evolutionarily, is inef- ficient from an energetic point of view, that is less growth is achieved per unit of input nutrient. We conclude, that competition can lead to an evolutionary pressure towards inefficiency
Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community
A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of species composition. At high nutrient levels, however, species interactions may shift to competition for light, which might make nutrient ratios less relevant. The "nutrient-load hypothesis" merges these two perspectives, by extending the classic model of competition for two nutrients to include competition for light. Here, we test five key predictions of the nutrient-load hypothesis using multispecies competition experiments. A marine phytoplankton community sampled from the North Sea was inoculated in laboratory chemostats provided with different nitrogen (N) and phosphorus (P) loads to induce either single resource limitation or co-limitation of N, P, and light. Four of the five predictions were validated by the experiments. In particular, different resource limitations favored the dominance of different species. Increasing nutrient loads caused changes in phytoplankton species composition, even if the N:P ratio of the nutrient loads remained constant, by shifting the species interactions from competition for nutrients to competition for light. In all treatments, small species became dominant whereas larger species were competitively excluded, supporting the common view that small cell size provides a competitive advantage under resource-limited conditions. Contrary to expectation, all treatments led to coexistence of diatoms, cyanobacteria and green algae, resulting in a higher diversity of species than predicted by theory. Because the coexisting species comprised three phyla with different photosynthetic pigments, we speculate that niche differentiation in the light spectrum might play a role. Our results show that mechanistic resource competition models that integrate nutrient-based and light-based approaches provide an important step forward to understand and predict how changing nutrient loads affect community composition
Nutrient levels and trade-offs control diversity in a serial dilution ecosystem
Microbial communities feature an immense diversity of species and this
diversity is linked with outcomes ranging from ecosystem stability to medical
prognoses. Yet the mechanisms underlying microbial diversity are under debate.
While simple resource-competition models don't allow for coexistence of a large
number of species, it was recently shown that metabolic trade-offs can allow
unlimited diversity. Does this diversity persist with more realistic,
intermittent nutrient supply? Here, we demonstrate theoretically that in serial
dilution culture, metabolic trade-offs allow for high diversity. When a small
amount of nutrient is supplied to each batch, the serial dilution dynamics
mimic a chemostat-like steady state. If more nutrient is supplied, diversity
depends on the amount of nutrient supplied due to an "early-bird" effect. The
interplay of this effect with different environmental factors and
diversity-supporting mechanisms leads to a variety of relationships between
nutrient supply and diversity, suggesting that real ecosystems may not obey a
universal nutrient-diversity relationship.Comment: Appendix follows main tex
Food Quality in Producer-Grazer Models: A Generalized Analysis
Stoichiometric constraints play a role in the dynamics of natural
populations, but are not explicitly considered in most mathematical models.
Recent theoretical works suggest that these constraints can have a significant
impact and should not be neglected. However, it is not yet resolved how
stoichiometry should be integrated in population dynamical models, as different
modeling approaches are found to yield qualitatively different results. Here we
investigate a unifying framework that reveals the differences and commonalities
between previously proposed models for producer-grazer systems. Our analysis
reveals that stoichiometric constraints affect the dynamics mainly by
increasing the intraspecific competition between producers and by introducing a
variable biomass conversion efficiency. The intraspecific competition has a
strongly stabilizing effect on the system, whereas the variable conversion
efficiency resulting from a variable food quality is the main determinant for
the nature of the instability once destabilization occurs. Only if the food
quality is high an oscillatory instability, as in the classical paradox of
enrichment, can occur. While the generalized model reveals that the generic
insights remain valid in a large class of models, we show that other details
such as the specific sequence of bifurcations encountered in enrichment
scenarios can depend sensitively on assumptions made in modeling stoichiometric
constraints.Comment: Online appendixes include
Receptor uptake arrays for vitamin B12, siderophores and glycans shape bacterial communities
Molecular variants of vitamin B12, siderophores and glycans occur. To take up
variant forms, bacteria may express an array of receptors. The gut microbe
Bacteroides thetaiotaomicron has three different receptors to take up variants
of vitamin B12 and 88 receptors to take up various glycans. The design of
receptor arrays reflects key processes that shape cellular evolution.
Competition may focus each species on a subset of the available nutrient
diversity. Some gut bacteria can take up only a narrow range of carbohydrates,
whereas species such as B.~thetaiotaomicron can digest many different complex
glycans. Comparison of different nutrients, habitats, and genomes provide
opportunity to test hypotheses about the breadth of receptor arrays. Another
important process concerns fluctuations in nutrient availability. Such
fluctuations enhance the value of cellular sensors, which gain information
about environmental availability and adjust receptor deployment. Bacteria often
adjust receptor expression in response to fluctuations of particular
carbohydrate food sources. Some species may adjust expression of uptake
receptors for specific siderophores. How do cells use sensor information to
control the response to fluctuations? That question about regulatory wiring
relates to problems that arise in control theory and artificial intelligence.
Control theory clarifies how to analyze environmental fluctuations in relation
to the design of sensors and response systems. Recent advances in deep learning
studies of artificial intelligence focus on the architecture of regulatory
wiring and the ways in which complex control networks represent and classify
environmental states. I emphasize the similar design problems that arise in
cellular evolution, control theory, and artificial intelligence. I connect
those broad concepts to testable hypotheses for bacterial uptake of B12,
siderophores and glycans.Comment: Added many new references, edited throughou
Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes
Plant–soil interactions, such as the coupling of plants' below-ground biomass allocation with soil organic matter (SOM) decomposition, nutrient release and plant uptake, are essential to understand the response of carbon (C) cycling to global changes. However, these processes are poorly represented in the current terrestrial biosphere models owing to the simple first-order approach of SOM cycling and the ignorance of variations within a soil profile. While the emerging microbially explicit soil organic C models can better describe C formation and turnover, at present, they lack a full coupling to the nitrogen (N) and phosphorus (P) cycles with the soil profile. Here we present a new SOM model – the Jena Soil Model (JSM) – which is microbially explicit, vertically resolved and integrated with the N and P cycles. To account for the effects of nutrient availability and litter quality on decomposition, JSM includes the representation of enzyme allocation to different depolymerisation sources based on the microbial adaptation approach as well as of nutrient acquisition competition based on the equilibrium chemistry approximation approach. Herein, we present the model structure and basic features of model performance in a beech forest in Germany. The model reproduced the main SOM stocks and microbial biomass as well as their vertical patterns in the soil profile. We further tested the sensitivity of the model to parameterisation and showed that JSM is generally sensitive to changes in microbial stoichiometry and processes
Amphibian Contributions to Ecosystem Services
Ecosystems provide essential services for human society, which include provisioning, regulating, cultural, and supporting services. Amphibians provide provisioning services by serving as a food source for some human societies, especially in Southeast Asia. They also serve as models in medical research and provide potential for new pharmaceuticals such as analgesics and anti-viral drugs derived from skin secretions. Amphibians contribute to regulating services by reducing mosquito recruitment from ephemeral wetlands, potentially controlling other pest species, and indirectly through predation of insect pollinators. Often neglected, ecosystems also provide cultural services to human societies that increase the quality of human life through recreation, religion, spirituality, and aesthetics. As an abundant and diverse class of vertebrates, amphibians also play prominent roles in the culture of human societies through pathways such as mythology, literature, and art. Most research on the role of amphibians in ecosystems has been on their contribution to supporting services. This is also the area where amphibians are likely to have the largest contribution to ecosystem services. Supporting services have structural (e.g., habitat) and functional (e.g., ecosystem functions and processes) components. Amphibians can affect ecosystem structure through soil burrowing and aquatic bioturbation and ecosystem functions such as decomposition and nutrient cycling through waste excretion and indirectly through predatory changes in the food web. They also can control primary production in aquatic ecosystems through direct consumption and nutrient cycling. Unfortunately, amphibians are experiencing major declines and humans may be losing associated ecosystem services. It is important to understand how declines affect ecosystem services for human societies, but these declines can also serve as natural experiments to understand the role of amphibians in ecosystems
- …
