Appendix S1

Burson, A., M. Stomp, E. Greenwell, J. Grosse, and J. Huisman (2018) Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. *Ecology*.

Table S1. Composition of the mineral medium in the competition experiments. NaNO3 and K_2 HPO4 concentrations varied per experiment to create different N and P loads.

Compound	Concentration (µM)				
Salts/Buffers:					
$MgSO_4 \bullet 7H_20$	2.0×10^4				
KCl	8.0×10 ³				
CaCl ₂ •2H ₂ O	2.5×10^{3}				
NaCl	4.3×10 ⁵				
NaHCO ₃	500				
Macro-nutrients:					
NaNO ₃	2000; 160; 64				
$K_2HPO_4 \bullet 3H_2O$	125; 10; 4				
Na ₂ SiO ₃ •5H ₂ O	160				
H ₃ BO ₃	550				
Micro-nutrients:					
FeSO ₄ •7H ₂ 0	14				
Na ₂ EDTA	35				
$MnCl_2•4H_2O$	22				
$ZnCl_2$	2.4				
Na ₂ MoO ₄ •2H ₂ O	5.4				
CuSO ₄ •5H ₂ O	0.2				
CoCl ₂ •4H ₂ O	0.5				
Vitamins:					
Thiamine•HCl (B1)	0.6				
Biotin	4.0×10 ⁻³				
Cyanocobalamin (B12)	7.4×10 ⁻³				

	HN:LP	LN:LP	LN:HP	HN:MP	MN:MP	MN:HP	HN:HP
DIN:DIP _{Medium}	500	16	0.512	200	16	1.28	16
$DIN_{Medium} \left(\mu M \right)$	2000	64	64	2000	160	160	2000
$DIP_{Medium}\left(\mu M\right)$	4	4	125	10	10	125	125
DIN:DIP _{Chemostat}	2380	2	0.04	275	1	0.04	6
$DIN_{Chemostat}$ (μM)	1190	4	2	825	3	2	181
$DIP_{Chemostat}$ (μM)	0.5	2	46	3	3	49	29
$I_{\rm in}$ (µmol photons m ⁻² s ⁻¹)	40	40	40	40	40	40	40
I_{out} (µmol photons m ⁻² s ⁻¹)	23	26	24	9.5	19	17	0.4
Biovolume (mm ³ L ⁻¹)	60.1	40.6	29.6	158.4	89.6	132.6	247.7
Resource limitation ¹	Р	N+P	Ν	P+light	N+P (+light)	N(+light)	light

Table S2. Nutrient and light conditions in the mineral medium supplied to the experiments (medium) and measured in the competition experiments at steady state (chemostats).

¹*The indicated resource limitation is reflective of the targeted limitation pattern presented in Figure 1B and the realized DIN, DIP and I_{out} levels achieved in the competition experiments.*

Figure S1. Time series of nutrient and light conditions in the competition experiments. (A-G) Time series of DIN and DIP concentrations, and (H-N) total biovolume and light transmission (I_{out}) in the 7 competition experiments.

Figure S2. Regression analysis of the coexisting species versus the N:P ratio or total biovolume of the competition experiments. The graphs show linear regression of the relative abundances of the species at steady state versus (A-D) the N:P ratio of the mineral medium, and (E-H) the total biovolume in the competition experiments. The regressions in (A-D) are based on $\log(y)=a$ $\log(N:P_{medium}) + b$, and in (E-H) on $\log(y)=a$ Biovolume + b, where y is the relative abundance of the species concerned. Each datapoint represents an individual competition experiment (*n*=7); we note that *N. pusilla* was competitively excluded in one of the experiments (and hence *n*=6 in panels (A) and (E)). Regression lines are shown only if the relationship is significant.