1,917 research outputs found

    Lipschitz Optimisation for Lipschitz Interpolation

    Full text link
    Techniques known as Nonlinear Set Membership prediction, Kinky Inference or Lipschitz Interpolation are fast and numerically robust approaches to nonparametric machine learning that have been proposed to be utilised in the context of system identification and learning-based control. They utilise presupposed Lipschitz properties in order to compute inferences over unobserved function values. Unfortunately, most of these approaches rely on exact knowledge about the input space metric as well as about the Lipschitz constant. Furthermore, existing techniques to estimate the Lipschitz constants from the data are not robust to noise or seem to be ad-hoc and typically are decoupled from the ultimate learning and prediction task. To overcome these limitations, we propose an approach for optimising parameters of the presupposed metrics by minimising validation set prediction errors. To avoid poor performance due to local minima, we propose to utilise Lipschitz properties of the optimisation objective to ensure global optimisation success. The resulting approach is a new flexible method for nonparametric black-box learning. We provide experimental evidence of the competitiveness of our approach on artificial as well as on real data

    Geometrical Frustration and Static Correlations in Hard-Sphere Glass Formers

    Get PDF
    We analytically and numerically characterize the structure of hard-sphere fluids in order to review various geometrical frustration scenarios of the glass transition. We find generalized polytetrahedral order to be correlated with increasing fluid packing fraction, but to become increasingly irrelevant with increasing dimension. We also find the growth in structural correlations to be modest in the dynamical regime accessible to computer simulations.Comment: 21 pages; part of the "Special Topic Issue on the Glass Transition

    Discrete breathers in a nonlinear electric line: Modeling, Computation and Experiment

    Get PDF
    We study experimentally and numerically the existence and stability properties of discrete breathers in a periodic nonlinear electric line. The electric line is composed of single cell nodes, containing a varactor diode and an inductor, coupled together in a periodic ring configuration through inductors and driven uniformly by a harmonic external voltage source. A simple model for each cell is proposed by using a nonlinear form for the varactor characteristics through the current and capacitance dependence on the voltage. For an electrical line composed of 32 elements, we find the regions, in driver voltage and frequency, where nn-peaked breather solutions exist and characterize their stability. The results are compared to experimental measurements with good quantitative agreement. We also examine the spontaneous formation of nn-peaked breathers through modulational instability of the homogeneous steady state. The competition between different discrete breathers seeded by the modulational instability eventually leads to stationary nn-peaked solutions whose precise locations is seen to sensitively depend on the initial conditions

    TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems

    Full text link
    Learning complex multi-agent system dynamics from data is crucial across many domains, such as in physical simulations and material modeling. Extended from purely data-driven approaches, existing physics-informed approaches such as Hamiltonian Neural Network strictly follow energy conservation law to introduce inductive bias, making their learning more sample efficiently. However, many real-world systems do not strictly conserve energy, such as spring systems with frictions. Recognizing this, we turn our attention to a broader physical principle: Time-Reversal Symmetry, which depicts that the dynamics of a system shall remain invariant when traversed back over time. It still helps to preserve energies for conservative systems and in the meanwhile, serves as a strong inductive bias for non-conservative, reversible systems. To inject such inductive bias, in this paper, we propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE). It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics. In addition, we further provide theoretical analysis to show that our regularization essentially minimizes higher-order Taylor expansion terms during the ODE integration steps, which enables our model to be more noise-tolerant and even applicable to irreversible systems. Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method. Particularly, it achieves an MSE improvement of 11.5 % on a challenging chaotic triple-pendulum systems

    The Epistemology of Simulation, Computation and Dynamics in Economics Ennobling Synergies, Enfeebling 'Perfection'

    Get PDF
    Lehtinen and Kuorikoski ([73]) question, provocatively, whether, in the context of Computing the Perfect Model, economists avoid - even positively abhor - reliance on simulation. We disagree with the mildly qualified affirmative answer given by them, whilst agreeing with some of the issues they raise. However there are many economic theoretic, mathematical (primarily recursion theoretic and constructive) - and even some philosophical and epistemological - infelicities in their descriptions, definitions and analysis. These are pointed out, and corrected; for, if not, the issues they raise may be submerged and subverted by emphasis just on the unfortunate, but essential, errors and misrepresentationsSimulation, Computation, Computable, Analysis, Dynamics, Proof, Algorithm

    Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers

    Full text link
    In this paper we employ SMT solvers to soundly synthesise Lyapunov functions that assert the stability of a given dynamical model. The search for a Lyapunov function is framed as the satisfiability of a second-order logical formula, asking whether there exists a function satisfying a desired specification (stability) for all possible initial conditions of the model. We synthesise Lyapunov functions for linear, non-linear (polynomial), and for parametric models. For non-linear models, the algorithm also determines a region of validity for the Lyapunov function. We exploit an inductive framework to synthesise Lyapunov functions, starting from parametric templates. The inductive framework comprises two elements: a learner proposes a Lyapunov function, and a verifier checks its validity - its lack is expressed via a counterexample (a point over the state space), for further use by the learner. Whilst the verifier uses the SMT solver Z3, thus ensuring the overall soundness of the procedure, we examine two alternatives for the learner: a numerical approach based on the optimisation tool Gurobi, and a sound approach based again on Z3. The overall technique is evaluated over a broad set of benchmarks, which shows that this methodology not only scales to 10-dimensional models within reasonable computational time, but also offers a novel soundness proof for the generated Lyapunov functions and their domains of validity

    Fluid Model Checking

    Full text link
    In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC which depends on the environment and on the other agents only through the solution of the fluid differential equation. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae and of reachability probabilities. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae

    Coupling the Yoccoz-Birkeland population model with price dynamics: chaotic livestock commodities market cycles

    Get PDF
    We propose a new model for the time evolution of livestock commodities which exhibits endogenous deterministic stochastic behaviour. The model is based on the Yoccoz-Birkeland integral equation, a model first developed for studying the time-evolution of single species with high average fertility, a relatively short mating season and density dependent reproduction rates. This equation is then coupled with a differential equation describing the price of a livestock commodity driven by the unbalance between its demand and supply. At its birth the cattle population is split into two parts: reproducing females and cattle for butchery. The relative amount of the two is determined by the spot price of the meat. We prove the existence of an attractor and we investigate numerically its properties: the strange attractor existing for the original Yoccoz-Birkeland model is persistent but its chaotic behaviour depends also from the price evolution in an essential way.Comment: 26 pages, 19 figure
    • …
    corecore