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Chaos and the Explanatory Significance of Equilibrium: 
Strange Attractors in Evolutionary Game Dynamics1 

Brian Skyrms 

University of California-Irvine 

1. Introduction 

The classical game theory of von Neumann and Morgenster (1947) is built on the 
concept of equilibrium. I will begin this essay with two more or less controversial 
philosophical claims regarding that equilibrium concept: 

(1)The explanatory significance of the equilibrium concept depends on the under- 
lying dynamics. 

(2) When the underlying dynamics is taken seriously, it becomes apparent that 
equilibrium is not the central explanatory concept. 

With regard to the first thesis, let me emphasize a point first made by von Neumann 
and Morgenstern themselves. Their theory is a static theory which discusses the na- 
ture and existence of equilibrium, but which does not address the question: "How is 
equilibrium reached?" The explanatory significance of the equilibrium concept, how- 
ever, depends on the plausibility of the underlying dynamics which is supposed to 
bring players to equilibrium. One sort of story supposes that the decision makers in- 
volved reach equilibrium by an idealized reasoning process which requires a great 
deal of common knowledge, godlike calculational powers, and perhaps allegiance to 
the recommendations of a particular theory of strategic interaction. Another kind of 
story-deriving from evolutionary biology-views game theoretic equilibria as fixed 
points of evolutionary adaptation, with none of the rational idealization of the first 
story. The power of game theory to explain a state of affairs as an equilibrium thus de- 
pends on the viability of a dynamical scenario appropriate to the situation in question, 
which shows how such an equilibrium would be reached. 

It is well-known that the problem is especially pressing in an area of game theory 
which von Neumann and Morgenstern did not emphasize: the theory of non-zero sum, 
non-cooperative games. Here, unlike the zero-sum case, many non-equivalent equilib- 
ria are possible. If different decision makers aim for different equilibria, then the joint 
result of their actions may not be an equilibrium at all. Thus the dynamics must bear 
the burden of accounting for equilibrium selection by the players, because without an 
account of equilibrium selection the equilibrium concept itself loses its plausibility. 
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Once one has asked the first dynamical question: "How is equilibrium reached?" it 
becomes impossible not to ask the more radical question: "Is equilibrium reached?" 
Perhaps it is not. If not, then it is important to canvass the ways in which may not be 
reached and explore complex non-convergent behavior permitted by the underlying 
dynamics. This essay will take a small step in that direction. 

In particular, I will present numerical evidence for extremely complicated behav- 
ior in the evolutionary game dynamics introduced by Taylor and Jonker (1978). This 
dynamics, which is based on the process of replication, is found at various levels of 
chemical and biological organization (Hofbauer and Sigmund 1988). For a taste of 
what is possible in this dynamics with only four strategies, see the "strange attractor" 
in figure 1. This is a projection of a single orbit for a four strategy evolutionary game 
onto the three simplex of the probabilities of the first three strategies. A strange at- 
tractor cannot occur in the Taylor-Jonker flow in three strategy evolutionary games 
because the dynamics takes place on a two dimensional simplex. Zeeman (1980) 
leaves it open as to whether strange attractors are possible in higher dimensions or 
not. This paper presents strong numerical evidence for the existence of strange attrac- 
tors in the lowest dimension in which they could possibly occur. 

Iterations - 5008685 S3 

Si S 

Figure 1: Parameter = 5 
The plan of the paper is as follows: Sections 2, 3, and 4 introduce key concepts of 

games, dynamics, and evolutionary game dynamics. Section 5 will describe the four- 
strategy evolutionary game which gives rise to chaotic dynamics, and the bifurcations 
which lead to chaos as the parameters of the model are varied. Section 6 will give a sta- 
bility analysis of the equilibria encountered along the road to chaos described in section 
5. Section 7 describes the numerical calculation of Liapunov exponents. Section 8 indi- 
cates some related literature, and discusses the relation to Lotka-Volterra ecological 
models. My second philosophical claim will be discussed in Section 9. 

2. Games 

We will be concerned with finite, non-cooperative, normal form games. There are a 
finite number of players and each player has a finite number of possible strategies. 
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Each player has only one choice to make and makes it without being informed of the 
choices of any other players. The games are to be thought of as non-cooperative. 
There is no communication or precommitment before the players make their choices. 
Each possible combination of strategies determines the payoffs for each of the players. 

A specification of the number of players, the number of strategies for each player 
and the payoff function determines the game. A Nash equilibrium of the game is a 
strategy combination such that no player does better on any unilateral deviation. We 
extend players' possible acts to include randomized choices at specified probabilities 
over the originally available acts. The new randomized acts are called mixed strate- 
gies, and the original acts are called pure strategies. The payoffs for mixed strategies 
are defined as their expected values using the probabilities in the mixed acts to define 
the expectation (and assuming independence between different players acts.) We will 
assume that mixed acts are always available. Then every finite non-cooperative nor- 
mal form game has a Nash equilibrium. 

The game in example 1 has two Nash equilibria in pure strategies, one at <bottom, 
right> and one at <top, left>. Intuitively, the former equilibrium is-in some sense - 
highly instable, and the latter equilibrium is the only sensible one. 

1,1 0,0 

0,0 0,0 

Example 1 

Selten (1975) introduced the notion of a perfect equilibrium to capture this intu- 
ition. He considers perturbed games wherein each player rather that simply choosing 
a strategy, chooses to instruct a not perfectly reliable agent as to which strategy to 
choose. The agent has some small non-zero probabilities for mistakenly choosing 
each of the strategies alternative to the one he was instructed to choose. Probabilities 
of mistakes of agents for different players are uncorrelated. An equilibrium in the 
original game, which is the limit of some sequence of equilibria in perturbed games as 
the probability of mistakes goes to zero is called a (trembling-hand) perfect equilibri- 
um. In any perturbed game for example 1, there is only one equilibrium, with row and 
column instructing their agents to play top and left and their agents doing so with 
probability of one minus the small probability of a mistake. 

Classical game theory is intended as a theory of strategic interaction between ra- 
tional human payoff-maximizers. It has sometimes been criticized as incorporating an 
unrealistically idealized model of human rationality. Maynard-Smith and Price (1973) 
found a way to apply game theory to model conflicts between animals of the same 
species. The rationale obviously cannot be that snakes or mule deer are hyperrational, 
but rather that evolution is a process with a tendency in the direction of increased pay- 
off where payoff is reckoned in terms of evolutionary fitness. A rest point of such a 
process must be an optimal point. The insight that just such a tendency may be 
enough to make rational choice theory and game theory relevant can be carried back 
to the human realm, and accounts for much of the current interest in dynamic models 
of learning and deliberation in game theoretic contexts. 

Maynard Smith and Price are interested in providing an evolutionary explanation 
of "limited war" type conflicts between members of the same species, without re- 
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course to group selection. The key notion that they introduce is that of a strategy that 
would be a stable equilibrium under natural selection, an evolutionarily stable strate- 
gy. If all members of the population adopt that strategy, then no mutant can invade. 
Suppose that there is a large population, that contests are pairwise and that pairing is 
random. Then the relevant payoff is the average change in evolutionary fitness of an 
individual, and it is determined by its strategy and the strategy against which it is 
paired. These numbers can be conveniently presented in afitness matrix and can be 
thought of as defining the evolutionary game. The fitness matrix is read as giving 
row's payoff when playing against column. 

R H 
R ' 2 -3 
H -1 -2 

Example 2 

Thus in example 2, the payoff to R when playing against R is 2 but when playing 
against H is -3. The payoff to H when playing against R is -1 and when playing 
against H is -2. Here R is an evolutionarily stable strategy because in a population 
where all members adopt that strategy, a mutant who played H would do worse 
against members of the population that they would. Likewise, H is an evolutionarily 
stable strategy, since H does better against H than R does. Suppose, however, that a 
mutant could do exactly as well against an established strategy as that strategy against 
itself, but the mutant would do worse against itself than the established strategy. Then 
the established strategy should still be counted as evolutionarily stable, as it has 
greater average payoff than the mutant, in a population consisting of players playing it 
together with a few playing the mutant strategy. This is the formal definition adopted 
by Maynard-Smith. Let U(xly) be the payoff to strategy x played against strategy y. 
Strategy x is evolutionarily stable just in case U(xlx) > U(ylx) or U(xlx) = U(ylx) and 
U(xly) > U(yly) for all y different from x. Equivalently, x is evolutionarily stable if: 

1: U(xlx) > U(ylx) 

2: If U(xlx)=U(ylx) then U(xly)>U(yly) 

The fitness matrix determines a symmetric payoff matrix for a two person game-the 
symmetry deriving from the fact that only the strategies matter, not whether they are 
played by row or column-as is shown in example 3. 

2,2 -3,-1 

-1,-3 -2,-2 

Example 3 

An evolutionarily stable strategy is-by condition 1 above-a symmetric Nash equi- 
librium of the two-person non-cooperative game. Condition 2 adds a kind of stability 
requirement. 

The formal definition of evolutionarily stable strategy applies to mixed strategies as 
well as pure ones, and some fitness matrices will have the consequence that the only 
evolutionarily stable strategy is a mixed one. This is illustrated in example 4. 
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H D 
H -2 2 
D 0 1 

Example 4 

Neither H nor D is an evolutionarily stable strategy, but a mixed strategy, M, of (1/3) H, 
(2/3) D is. This illustrates condition 2 in the definition of evolutionarily stable strategy. 
U(xIM)=2/3 if x is H or D or any mixture of H and D. But an invader who plays H or D 
or a different mixture of H and D will do worse against herself that M does against her. 
For example, consider H as an invader. U(HIH)=-2 while U(MIH)=-2/3. The interpreta- 
tion of mixed strategies as strategies adopted by each member of the population is the 
only one which makes sense of the characterization: if all members of the population 
adopt that strategy, then no mutant can invade. There is an alternative interpretation of 
mixed strategies in terms of proportions of a polymorphic population, all of whose 
members play pure strategies. The formal definition of evolutionarily stable strategy in 
terms of 1 and 2 still makes sense on this reinterpretation of mixed strategies. 

If we consider the two person non-cooperative normal form game associated with 
a fitness matrix, an evolutionarily stable strategy, x, induces a symmetric Nash equi- 
librium <x,x> of the game which has certain stability properties. Earlier, we consid- 
ered Selten's concept of perfect equilibrium, which rules out certain instabilities. 
Evolutionary stability is a stronger requirement than perfection. If x is an evolutionar- 
ily stable strategy, then <x,x> is a perfect symmetric Nash equilibrium of the associ- 
ated game, but the converse does not hold. In the game associated with the fitness ma- 
trix in example 5, <S2,S2> is a perfect equilibrium.2 

Sl S2 S3 
S1 1 0 -9 
S2 0 0 -4 

S3 -9 -4 -4 

Example 5 

S2, however, is not an evolutionarily stable strategy because U(SlIS2)=U(S21S2) and 
U(S 1IS1)>U(S21S1). 

The concepts of equilibrium and stability in game theory are quasi-dynamical no- 
tions. How do they relate to their full dynamical counterparts when game theory is 
embedded in a dynamical theory of equilibration? 

3. Dynamics 

The state of a system is characterized by a state vector, x, which specifies the val- 
ues of relevant variables. (In the case of prime interest here, the relevant variables will 
be the probabilities of strategies in a game.) The dynamics of the system specifies how 
the state vector evolves in time. The path that a state vector describes in state space as 
it evolves according to the dynamics is called a trajectory, or orbit. Time can either be 
modeled as discrete or as continuous. For the former case, a deterministic dynamics 
consists of a map which may be specified by a system of difference equations: 
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x(t + 1) = f(x(t)) 

In the latter case, a deterministic dynamics is a flow which may be specified by a sys- 
tem of differential equations: 

dx/dt = f(x(t)) 

An equilibrium point is a fixed point of the dynamics. In the case of discrete time, it 
is a point, x of the state space such that f(x) = x. For continuous time, it is a state, 
x = <xl, ...,xi...> such that dxi/dt = 0, for all i. An equilibrium x is stable if points 
near to it remain near to it. More precisely, x is stable if for every neighborhood, V of 
x, there is a neighborhood, V', of x such that if the state y is in V' at time t=O, it re- 
mains in V for all time t > 0. A equilibrium, x, is strongly stable (or asymptotically 
stable) if nearby points tend towards it. That is, to the definition of stability we add 
the clause that the limit as t goes to infinity of y(t) = x. 

An invariant set is a set, S, of points of the state space such that if the system starts 
at a point in S, then at any subsequent time the state of the system is still in S. A unit 
set is an invariant set just in case it's member is an equilibrium. A closed invariant set, 
S, is an attracting set if nearby points tend towards it; that is, if there is a neighbor- 
hood, V, of S such that the orbit of any point in V remains in V and converges to S. 
An attractor is an indecomposable attracting set. [Sometimes other conditions are 
added to the definition.] 

A dynamical system displays sensitive dependence on initial conditions at a point if 
the distance between the orbits of that point and one infinitesimally close to it increases 
exponentially with time. This sensitivity can be quantified by the Lyapunov exponent(s) 
of an orbit. For a one-dimensional map, x(t+l) = f(x(t)), this is defined as follows3: 

1 
lim n- log adf ,= lim - log2- at xi 

n-oo n i=0 

A positive Lyapunov exponent may be taken as the mark of a chaotic orbit. For ex- 
ample, consider the "tent" map: 

Tent: 

x(t+ 1)= 1-21-x(t) 

The derivative is defined and its absolute value is 2 at all points except x=l/2. Thus, 
for almost all orbits the Lyapunov exponent is equal to one. 

An attractor for which the orbit of almost every point is chaotic is a strange at- 
tractor. For most known "strange attractors"-like the Lorenz attractor and the 
Rossler attractor-there is no mathematical proof that they are strange attractors, al- 
though the computer experiments strongly suggest that they are. The "strange attrac- 
tor" in game dynamics which appears in figure 1 and which will be discussed in sec- 
tions 5-7 has the same status. 

4. Game Dynamics 

A number of different dynamical models of equilibration processes have been 
studied in economics and biology. Perhaps the oldest is the dynamics considered by 



380 

Cournot (1897) in his studies of oligopoly. There is a series of production quantity 
setting by the oligopolists, at each time period of which each oligopolist makes her 
optimal decision on the assumption that the others will do what they did in the last 
round. The dynamics of the system of oligopolists is thus defined by a best response 
map. A Nash equilibrium is a fixed point of this map. It may be dynamically stable or 
unstable, depending on the parameters of the Cournot model. 

A somewhat more conservative adaptive strategy has been suggested by evolution- 
ary game theory. Here we will suppose that there is a large population, all of whose 
members play pure strategies. The interpretation of a mixed strategy is now as a poly- 
morphism of the population. Asexual reproduction is assumed for simplicity. We as- 
sume that individuals are paired at random, that each individual engages in one con- 
test (per unit time), and that the payoff in terms of expected number of offspring to an 
individual playing strategy Si against strategy Sj is Ui--given in the ith row and jth 
column of the fitness matrix, U. The proportion of the population playing strategy Sj 
will be denoted by Pr(Sj). The expected payoff to strategy i is: 

U(S) =pr(Sj) Uij 

The average fitness of the population is: 

U(StatusQuo) = Xpr(Si) U(Si) i 

The interpretation of payoff in terms of Darwinian fitness then gives us a map for the 
dynamics of evolutionary games in discrete time: 

r'(Si ) = pr (Status Qo) 

(where pr' is the proportion in the next time period.} 
The corresponding flow is given by: 

pr'(S)) ) U(Si)-(Status Quo) _pr(S ) 
dt U(Status Quo) 

As long as we are concemed-as we are here-only with symmetric evolutionary 
games, the same orbits are given by a simpler differential equation: 

pr(Si) = pr(S,)[U(Si) - U(StatusQuo)] dt 

This equation was introduced by Taylor and Jonker (1978) to provide a dynamical 
foundation for the quasi-dynamical notion of evolutionarily stable strategy of 
Maynard Smith and Price (1973). It has subsequently been studied by Zeeman (1980), 
Hofbauer (1981), Bomze (1985), van Damme (1987), Hofbauer and Sigmund (1988), 
Samuelson (1988), Crawford (1989) and Nachbar (1990). It will be the dynamics con- 
sidered in our example in the next section. It worth noting that even though the 
Taylor-Jonker dynamics is motivated by context where the payoffs are measured on 
an absolute scale of evolutionary fitness, nevertheless the orbits in phase space (al- 
though not the velocity along these orbits) is invariant under a linear transformation 
of the payoffs. Thus the Taylor-Jonker dynamics may be of some interest in contexts 
for which it was not intended, where the payoffs are given in von Neumann- 
Morgenstem utilities. 
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Relying on the foregoing studies, I will briefly summarize some of the known rela- 
tions between quasi-dynamical equilibrium concepts and dynamical equilibrium con- 
cepts for this dynamics. If [M,M] is a Nash equilibrium of the two-person non-coop- 
erative game associated with an evolutionary game, then M is a dynamic equilibrium 
of the Taylor-Jonker flow. The converse is not true, since every pure strategy is an 
equilibrium of the flow. However, if an orbit starts at a completely mixed point and 
converges to a pure strategy then that strategy is a Nash equilibrium. Furthermore, if 
M is a stable dynamic equilibrium in the Taylor-Jonker flow, then [M,M] must be a 
Nash equilibrium of the associated game. However if M is dynamically stable, [M,M] 
need not be perfect, and if [M,M] is perfect, then M need not be dynamically stable. If 
M is dynamically strongly stable (asymptotically stable) then [M,M] must be perfect, 
but the converse does not hold. If M is an evolutionarily stable strategy in the sense of 
Maynard-Smith and Price then it is perfect, but the converse does not hold. We do 
have equivalence between evolutionarily stable strategy and strongly dynamically sta- 
ble strategy in the special case of two strategy evolutionary games, but already in the 
case of three strategies there can be a strongly dynamically stable polymorphic popu- 
lation which is not a mixed evolutionarily stable strategy. Thus, although their are im- 
portant relations here between the quasi-dynamical and dynamical equilibrium con- 
cepts, they tend to draw the line at somewhat different places. 

As an example of a third kind of dynamics, we mention the fictitious play of 
Brown (1951). Like the Courot dynamics, there is a process in discrete time, at each 
stage of which each player plays a strategy which maximizes expected utility, accord- 
ing to her beliefs. But these beliefs are not quite so naive as those of the Cournot play- 
er. Rather than proceeding on the assumption that all other players will do just what 
they did last time, Brown's players form their probabilities of another player's next 
act according to the proportion of times that player has played that strategy in the 
past.4 Brown interpreted his as fictitious play, and Courot interpreted his as real play, 
but either could just as well be interpreted the other way. Thorlund-Peterson (1990) 
studies a dynamics closely related to Brown's in the context of a Coumot oligopoly, 
where it is shown to have convergence properties superior to those of the Cournot dy- 
namics. Brown's dynamics is driven by a simple inductive rule: Use the observed rel- 
ative frequency as your probability. The basic scheme could be implemented using 
modified inductive rules. A class of simple Bayesian inductive rules which share the 
same asymptotic properties as Brown's rule are investigated in Skyrms (1991). For 
these models, if the dynamics converges it converges to a Nash equilibrium in un- 
dominated strategies. For two-person games, such an equilibrium must be perfect. 
This contrasts with the Taylor-Jonker dynamics where an orbit can converge to a dy- 
namically stable equilibrium, M, where [M,M] is an imperfect equilibrium of the cor- 
responding two-person non-cooperative game. 

5. The Road to Chaos 

In this section we will focus on the Taylor-Jonker flow. Flows are usually better 
behaved than the corresponding maps, but we will see that this dynamics is capable of 
quite complicated behavior. Taylor and Jonker already note the possibility of non-con- 
vergence because of oscillations in three strategy evolutionary games. They consider 
the game whose fitness matrix, U, is given in example 6 (where a is a parameter to be 
varied): 
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S1 S2 S3 
S1 2 1 5 
S2 5 a 0 
S3 1 4 3 

Example 6 

For a=l the completely mixed equilibrium serves as an example of an equilibrium 
which is dynamically strongly stable but not an evolutionarily stable strategy. For a<3 
the equilibrium is strongly stable, but at a=3 a qualitative change takes place. Now the 
mixed equilibrium is stable but not strongly stable. It is surrounded by closed orbits. 
At a>3 the mixed equilibrium is unstable and the trajectories spiral outward to the 
boundary of the space. The change that takes place at a=3 is a degenerate Hopf bifur- 
cation.[See Guckenheimer and Holmes 1986, pp. 73 and 150 ff.] It is degenerate be- 
cause the situation at a=3 is not structurally stable. Any small perturbation of the 
value of a destroys the closed orbits. This is just about as wild as the dynamical be- 
havior can get with three strategies. In particular, generic Hopf bifurcations are im- 
possible here. [ See Zeeman (1980) and Hofbauer (1981). Zeeman proves that a 
generic Hopf bifurcation is impossible for 3-strategy games, and describes the struc- 
turally stable flows for such games under the assumption that is discharged in 
Hofbauer.] And chaotic strange attractors are not possible, because the flow takes 
place on a two-dimensional simplex. 

However, with four strategies we get the strange attractor pictured in figure 1. 
(This is a projection of of the three dimensional simplex of probabilities for four 
strategies onto the two dimensional simplex of the first three strategies. The three di- 
mensional structure, however, is fairly easy to see in the figure. ) There is a route to 
this strange attractor that leads through a generic Hopf bifurcation. Consider the fit- 
ness matrix, U, of example 7 (where a is the parameter to be varied): 

-1 -1 -10 1,000 
-1.5 -1 -1 1,000 
a .5 0 -1,000 
0 0 0 0 

Example 7 

Figures 1 through 6 are snapshots taken along the path to chaos as this parameter 
is varied. At a=2.4 there is convergence to a mixed equilibrium as shown in figure 2. 
The orbit spirals in towards the mixed equilibrium which is visible as the white dot in 
the center of the orbit. As the value of a is raised there is a generic Hopf bifurcation 
giving rise to a limit cycle around the mixed equilibrium. This closed orbit is struc- 
turally stable; it persists for small variations in the parameter. It is also an attracting 
set. This closed orbit is shown for a=2.55 in figure 3. As the value of the parameter is 
raised further, the limit cycle expands and then undergoes a period doubling bifurca- 
tion. Figure 4 shows the cycle of period 2 at a=3.885. This is followed by another pe- 
riod doubling bifurcation, leading to a cycle of period 4 at a = 4.0, as shown in figure 
5. There are very long transients before the orbit settles down to this cycle. At a=5, 
we get a transition to chaotic dynamics on the strange attractor shown in figure 1. 
Raising the parameter to a=6 leads to further geometrical complications in the strange 
attractor as shown in figure 6. 
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Iterations = 1252455 

Si 

y -?. \ 
Figure 2. Parameter = 2.4 

Iterations =1231893 S3 

Sl/ \2 S1 i 

Figure 3. Parameter = 2.55 

Differential equations were numerically integrated in double precision using 
fourth-order Runge-Kutta method [Press, et al (1989)].For figures 1 through 4 and 6 a 
fixed step size of .001 was used. For figure 5 a fixed step size of .01 was used. This 
was done on an IBM model 70 personal computer with a 387 math coprocessor. The 
projection of the orbit on the simplex of probabilities of the first three strategies was 
plotted to the screen in vga graphics mode. For figures 1 through 4, the first 50,000 
steps (= 50 time units) were not plotted to eliminate transients. For figure 5, the first 
100,000 (=1,000 time units) steps were omitted to eliminate very long transients. For 
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Iterations = 1105715 

Figure 4. Parameter = 3.885 

Iterations = 1061173 S 

Si 
S2 

Figure 5. Parameter = 4 

figure 6, only the first 1,000 steps were omitted. In each case, the total number of 
steps run is shown in the top left corer of the illustration. The screen was captured 
using the WordPerfect 5.1 GRAB utility and printed on a Hewlett Packard LaserJet II. 

6. Stability Analysis of Equilibria 

As a suppliment and a check on the graphical information presented in the previ- 
ous section, the interior equilibrium points along the route to chaos were calculated in 
high precision (40 decimal places) using Mathematica. The Jacobian matrix of partial 
derivatives was then evaluated at the equilibrium point, and its eigenvalues found. 
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These are used in stability analysis of the equilibria.[ See Hirsch and Smale (1974) 
Ch. 6.] One of these eigenvalues will always be zero; it is an artifact of the constraint 
that probabilities add to one, and is irrelevant to the stability analysis.5 

For example, at a = 2 there is an interior equilibrium at: 

xl = 0.513639995434311151695011984933226800594 
x2 = 0.456568884830498801506677319940646044972 
x3 = 0.0285355553019061750941673324962903778108 
x4 = 0.00125556443328387170414336262983677662367 

and at this point the eigenvalues of the Jacobian found numerically to be: 

-0.857610802580407062636665715951399308, 
-0.0562990388422014452825117944612367686+ 

0.28751233664741609891927527291295404 I 
-0.0562990388422014452825117944612367686- 

0.28751233664741609891927527291295404 I 
-5.4204572416321964652348917801112836 * 10-42 

Iterations = 6053606 

S1 

Figure 6. Parameter = 6 

The last eigenvalue is the insignificant zero eigenvalue. The significant eigenvalues all 
have negative real parts, indicating a strongly stable equilibrium, which attracts much in 
the way illustrated in figure 2. Indeed at a = 2.4-the situation actually illustrated in fig- 
ure 2-the situation is qualitatively much the same. The equilibrium has moves to about: 

xl = 0.363942 
x2 = 0.614658 
x3 = 0.020219 
x4 = 0.001181 

(henceforth I suppress the full precision in reporting the results). The non-significant 
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zero eigenvalue of the Jacobian is numerically calculated at the order of 10-39. The 
significant eigenvalues are approximately: 

-0.9752593, 
-0.001670447 + 0.26020784 I 
-0.001670447 - 0.26020784 I 

However, when we move to the limit cycle illustrated in figure 3 at a = 2.55, the situa- 
tion changes drastically. The equilibrium is now at approximately: 

xl = 0.328467 
x2 = 0.653285 
x3 = 0.018248 
x4 = 0.001164 

and the significant eigenvalues of the Jacobian are: 

-.993192, 
0.00572715 + 0.250703 I, 
0.00572715 - 0.250703 I 

The real eigenvalue is negative but the imaginary eigenvalues have positive real parts. 
Thus the equilibrium is a unstable saddle, with the imaginary eigenvalues indicating the 
outward spiral leading to the limit cycle. A little trial and error in this sort of computa- 
tion indicates that the Hopf bifurcation, where the real parts of the imaginary eigenval- 
ues pass from negative to positive, takes place between a = 2.41 and a = 2.42, where the 
real parts of the imaginary eigenvalues are respectively about -0.001 and +0.001. 

In the chaotic situation where a=5 shown in figure 1, the equilibrium has now 
moved to approximately: 

xl = 0.12574 
x2 = 0.866212 
x3 = 0.006956 
x4 = 0.001070 

The eigenvalues of the Jacobian are: 

-1.0267, 
0.173705 + 0.166908 I 
0.173705 + 0.166908 I 

This still indicates a saddle point equilibrium but here-as shown in figure 1-the 
orbit passes very close to this unstable equilibrium point. 

7. Numerical Calculation of Liapunov Exponents 

Liapunov exponents were calculated numerically using the algorithm presented in 
Wolf et. al. (1985) Appendix A. This integrates the differential equations of the dy- 
namical system to obtain a fiducial trajectory, and simultaneously integrates four 
copies of the linearized differential equations of the system with coefficients deter- 
mined by the location on the fiducial trajectory, to calculate the Liapunov spectrum. 
The latter are started at points representing a set of orthonormal vectors in the tangent 
space, and are periodically reorthonormalized during the process. In the calculation, 
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logarithms are taken to the base 2. The code was implemented for the replicator dy- 
namics by Linda Palmer. Differential equations were integrated in double precision 
using the IMSL Library integrator DIVPRK. The program was tested running it at 
a=2, starting it on the attracting equilibrium. In this case, the spectrum of Liapunov 
exponents (when converted to natural logarithms) should just consist of the real parts 
of the eigenvalues of the Jacobian evaluated at the equilibrium, which were discussed 
in the last section. The experimental results of a run from t=0 to t=l 0,000 were in 
agreement with the theoretical results up to four or five decimal places: 

Experimental Results Theoretical Results 

-0.85761 -0.85761 

-0.0563 -0.0563 

-0.0563 -0.0563 

-3.4 * 10-6 0 

The three negative exponents indicate the attracting nature of the equilibrium point, 
and the zero exponent corresponds to the spurious eigenvalue as explained in the last 
section. 

For a limit cycle in three dimensions, the Liapunov spectrum should have the qual- 
itative character <0, -, ->. The experimental results on the limit cycles at a = 2.55, a = 
3.885 and a = 4 have the appropriate qualitative character. Dropping one spurious 
zero exponent, we are left with: 

a =2.55 a =3.885 a =4 

L1 0.000 0.000 0.000 

L2 -0.020 -0.008 -0.004 

L3 -1.395 -1.419 -1.423 

For a strange attractor in three dimensions, the Liapunov exponents should have the 
qualitative character <+, 0, ->. At a=5, where visually we see the onset of chaos in 
figure 1, the Liapunov spectrum was calculated on a number of runs on a number of 
computers varying the reorthonormalization frequency and various parameters of the 
differential equation integrator. Dropping one spurious zero exponent, the following 
results are very robust: 

LI: 0.010 
L2: 0.000 
L3: -1.44 

For a "gold standard run" the equations were integrated from t=0 to t= 1,000,000 
with an error tolerance of 10-11. On this run the zeros (both L2 and the spurious expo- 
nent) are zeros to six decimal places. Details of the convergence are shown graphical- 
ly in figures 7-10 (where one unit on the x axis represents 10,000 units of time). 
The positive value of the largest Liapunov exponent, L1, indicates that there has in- 
deed been a transition to chaos.6,7 
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8. Relation to Lotka-Volterra Models and to Other Literature 

There are two papers discussing chaos in different dynamics for equilibration in 
games: one in an economic context and one in the context of theoretical computer sci- 
ence. Rand (1978) considers Courot duopoly models where the dynamics is 
Coumot's best response map. Where the reaction functions are tent shaped and have 
slope greater than one, we get chaotic dynamics. This model differs from the one in the 
previous section in a number of ways: (1) It is a map rather than a flow that is consid- 
ered (2) it is a different dynamics (3) When the Coumot model is considered as a 
game, there are an infinite number of pure strategies. Huberman and Hogg (1988) are 
concerned with distributed processing on computer networks. The problem of effi- 
cient use of resources in a network is modeled as a finite game, and a quasi-evolution- 
ary account of the dynamics of adaptation is proposed. In particular, they argue for 
chaos in the limit of long delays for a delay differential equation modeling information 
lag. The argument is that the long term behavior is modeled by a difference equation 
which is in a class all of whose members display chaotic behavior. The setting consid- 
ered by Huberman and Hogg is conceptually closer to the one in this paper than that of 
Rand in that only finite games are considered, but the dynamics is different. 

There is a closer connection with ecological models which do not, on the face of 
them, have much to do with evolutionary game theory. These are the Lotka-Volterra 
differential equations which are intended as simple models of population interactions 
between different species. For n species, they are: 

dxt [ 
n 

1 
dt = Xi ri + aijXj 

The xi are the population densities, the ri the intrinsic growth or decay rates for a 
species, and the aij the interaction coefficients which give the effect of the jth species 
on the ith species. 

The dynamics of two species Lotka-Volterra systems-either predator prey or two 
competing species-is well understood, and the dynamics of three and higher dimen- 
sional Lotka-Volterra systems is a subject of current research. Unstable cycles are pos- 
sible in two dimensional (predator-prey) Lotka-Volterra systems, but chaos is not. In 
three dimensions, however, several apparent strange attractors have been found. The 
first was found by Vance (1978) and classified as spiral chaos by Gilpin (1979). 
"Gilpin's strange attractor" has been extensively studied by Shaffer (1985), Shaffer and 
Kot (1986), Vandermeer (1991). Other strange attractors have been reported in three-di- 
mensional Lotka-Volterra systems. Arneodo, et al (1980), (1982) use a mixture of nu- 
merical evidence and theoretical argument to support the hypothesis of a Silnikov-type 
strange attractors in three and higher dimensions. See also Takeuchi and Adachi (1984) 
and Gardini, et al (1989). May and Leonard (1975) show that other kinds of wild be- 
havior are possible in Lotka-Volterra systems of three competitors. Smale (1976) shows 
that for ecological systems modeled by a general class of differential equations (not 
necessarily Lotka-Volterra) any kind of asymptotic dynamical behavior-including the 
existence of strange attractors-is possible if there are 5 or more competing species. 

There is an intimate connection between the Taylor-Jonker game dynamics and 
the Lotka-Volterra dynamics, which is established by Hofbauer (1981). A Lotka- 
Volterra system with n species corresponds to an evolutionary game with n+1 strate- 
gies such that the game dynamics on the evolutionary game is topologically orbital 
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equivalent to the Lotka-Volterra dynamics. To each species in the Lotka-Volterra sys- 
tem, there is a ratio of probabilities of strategies in the game with the same dynamics. 
Thus it is possible to use known facts about one kind of dynamical system to establish 
facts about the other. Hofbauer uses the known fact the 2 species Lotka-Volterra sys- 
tems do not admit limit cycles to verify Zeeman's conjecture that 3 strategy evolu- 
tionary games do not admit stable limit cycles in the game dynamics. It is thus possi- 
ble to investigate game dynamical pathology with an eye towards ecological patholo- 
gy. The strange attractor of the previous section is, in fact, the game theoretic counter- 
part to Gilpin's strange attractor. For game dynamical counterpart of the attractor of 
Arneodo, Coullet and Tresser we have example 8: 

0 -.6 0 1 

1 0 0 -.5 

-1.05 -.2 0 1.75 

.5 - .1 .1 0 

Example 8 

9 Conclusion 

Let us return to the second philosophical thesis with which I began this essay. That 
is that When the underlying dynamics is taken seriously, it becomes apparent that 
equilibrium is not the central explanatory concept. Rather, I would take the central 
dynamical explanatory concept to be that of an attractor (or attracting set). Not all dy- 
namical equilibria are attractors. Some are unstable fixed points of the dynamics. In 
the dynamical system of example 7 with a=5 there is an unstable equilibrium point 
which is never seen. And not all attractors are equilibria. There are limit cycles, 
quasiperiodic attractors, and strange attractors. The latter combine a kind of internal 
instability with macroscopic asymptotic stability. Thus, they can play the same kind 
of explanatory role as that of an attracting equilibrium-although what is explained is 
a different kind of phenomonon. 

Even this latter point, however, must be taken with a grain of salt. That is because 
of the possibility of extremely long transients. In example 7 with a=4, if we had omit- 
ted only the first 50 time units, we would not have eliminated the transient, and the 
plot would have looked like the strange attractor of figure 1 rather than one of a limit 
cycle. If transients are long enough, they may govern the phenomonae of interest to 
us. The concept of an attractor lives at t = infinity, but we do not. 

Notes 

1The existence of this strange attractor together with a preliminary study of the 
route to chaos involved was first reported in Skyrms (1992a). This paper contains fur- 
ther experimental results. I would like to thank the University of California at Irvine 
for support in the form of computing time and Linda Palmer for implementing and 
running programs to determine the Liapunov spectrum. I would also like to thank 
Immanuel Bomze, Vincent Crawford, William Harper and Richard Jeffrey for com- 
ments on an earlier version of this paper. 
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2But it is not a proper equilibrium. See van Damme (1987) for a definition of 
proper equilibrium, a proof that if S is an evolutionarily stable strategy, then <S,S> is 
a perfect and proper equilibrium of the associated game, and a great deal of other in- 
formation about relations between various stability concepts. 

3For flows the sum is replaced with an integral. For 3 dimensions, there is a spec- 
trum of three Lyapunov exponents, each quantifying divergence of the orbit in a dif- 
ferent direction. 

4To make the dynamics autonomous expand the concept of state of the system to 
include a "memory" of frequencies of past plays. 

5See Bomze (1986) p. 48 or van Damme (1987) p. 222 and note that in the exam- 
ple given, the expected utility of the status quo (= the average population fitness) at a 
completely mixed equilibrium point must be equal to zero, since for this fitness ma- 
trix, the expected utility of strategy 4 is identically zero. 

6For purposes of comparison, the largest Liapunov exponent here is roughly an 
order of magnitude smaller than that of the Rossler attractor. But the mean orbital peri- 
od of the attractor is roughly an order of magnitude larger. If we measured time in terms 
of mean orbital periods, L1 would here be of the same order of magnitude as L1 for the 
Rossler attractor. Data on the Rossler attractor was obtained from Wolf et. al. (1985). 

7At a=6, although the attractor appears to become geometrically more complex, 
the Liapunov spectrum is little changed: 

LI: 0.009 
L2: 0.000 
L3: -1.44 
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