453,254 research outputs found

    Numerical Simulation on Shoreline Change in Western Region of Badung Regency, Bali, Indonesia

    Full text link
    Shoreline change is considered the most dynamic processes in coastal region. Coastal erosion is a global problem where 70% beaches around the world are recessional. Almost all coastal area in Bali is potential to suffer from erosion. Badung Regency in Bali has many beaches that famous as tourism area where from about 64 km shoreline length, 11,5 km were recorded suffered by erosion in 1985 and 12,1 km erosion in 2007. This study aims to determine the value of shoreline changes that occur in western of Badung Regency from 2001 to 2010 based on the predicted wave data using monthly wind data from Ngurah Rai, Tuban, Badung, Bali meteorological station. Shoreline change simulation measured the forward (accretion) or backward (erosion) distance of the shoreline on the East-West direction. Bali has wind patterns that influenced by the Northwest monsoon from November-April and Southeast monsoon from May-October. In 2001-2010, dominant wind in this region was coming from east, southeast, and west. Geographically western coast of Badung influenced by incoming winds from the west, southwest, and south. Wind blow towards the coast in 2001-2010 are dominantly come from the west with wind speed range was about 1,7-4,7 m/s. Simulation indicated that generally shoreline tends to experience accretion in the north and erosion in the south. From 16000 m of study shoreline, along 7100 m of shoreline tend to suffer by erosion. Oppositely, along 8900 m of shoreline tend to have accretion

    Numerical simulation of convective airflow in an empty room

    Get PDF
    Numerical simulation of airflow inside an empty room has been carried out for a forced convection, a natural convection and a mixed convection respectively, by using a computational fluid dynamics approach of solving the Reynolds-averaged Navier-Stokes fluid equations. Two-dimensional model was studied at first; focusing on the grid refinement, the mesh topology effect, and turbulence model influences. It was found that structured mesh results are in better agreement with available experimental measurements for all three scenarios. Further study using a three-dimensional model has shown very good agreements with test data at measuring points. Furthermore, present studies have revealed low-frequency flow unsteadiness by monitoring the time history of flow variables at measuring positions. This phenomenon has not yet reported and discussed in previous studies

    Numerical simulation of spreading drops

    Get PDF
    We consider a liquid drop that spreads on a wettable surface. Different time evolutions have been observed for the base radius r depending of the relative role played by inertia, viscosity, surface tension and the wetting condition. Numerical simulations were performed to discuss the relative effect of these parameters on the spreading described by the evolution of the base radius r(t) and the spreading time tS. Different power law evolutions r(t) ∝ tⁿ have been observed when varying the parameters. At the early stage of the spreading, the power law t½ (n = 1/2) is observed as long as capillarity is balanced by inertia at the contact line. When increasing the viscosity contribution, the exponent n is found to increase despite the increase of the spreading time. The effect of the surface wettability is observed for liquids more viscous than water. For a small contact angle, the power law t½ is then followed by the famous Tanner law t1/10 once the drop shape has reached a spherical cap

    Numerical simulation of spacecraft charging phenomena

    Get PDF
    A numerical simulation program is being constructed having the following features: (1) infinite circular cylindrical geometry with angle-dependence, (2) inclusion of incident particles, photoelectrons, secondary electrons, backscattered electrons, any gun emissions, and any internal current pathways including surface conductive layers, (3) quasistatic time-dependent iteration, in which sheath potential changes during particle transit times are ignored, (4) use of approximate, locally-dependent space charge density expressions in solving Poisson's equation for sheath potentials, with use of numerical orbit-following to determine surface currents, and (5) incident particle velocity distributions isotropic or beam-like, or some superposition of these. Rationales for each of these features are discussed

    Numerical Simulation of an Electroweak Oscillon

    Full text link
    Numerical simulations of the bosonic sector of the SU(2)×U(1)SU(2)\times U(1) electroweak Standard Model in 3+1 dimensions have demonstrated the existence of an oscillon -- an extremely long-lived, localized, oscillatory solution to the equations of motion -- when the Higgs mass is equal to twice the W±W^\pm boson mass. It contains total energy roughly 30 TeV localized in a region of radius 0.05 fm. A detailed description of these numerical results is presented.Comment: 12 pages, 8 figures, uses RevTeX4; v2: expanded results section, fixed typo

    Numerical simulation of stochastic vortex tangles

    Full text link
    We present the results of simulation of the chaotic dynamics of quantized vortices in the bulk of superfluid He II. Evolution of vortex lines is calculated on the base of the Biot-Savart law. The dissipative effects appeared from the interaction with the normal component, or/and from relaxation of the order parameter are taken into account. Chaotic dynamics appears in the system via a random forcing, e.i. we use the Langevin approach to the problem. In the present paper we require the correlator of the random force to satisfy the fluctuation-disspation relation, which implies that thermodynamic equilibrium should be reached. In the paper we describe the numerical methods for integration of stochastic differential equation (including a new algorithm for reconnection processes), and we present the results of calculation of some characteristics of a vortex tangle such as the total length, distribution of loops in the space of their length, and the energy spectrum.Comment: 8 pages, 5 figure

    Numerical simulation of Faraday waves

    Full text link
    We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier-Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The domain of calculation is periodic in the horizontal directions and bounded in the vertical direction by two rigid horizontal plates. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar and Tuckerman [J. Fluid Mech. 279, 49-68 (1994)]. The finite amplitude results are compared with the experiments of Kityk et al. [Phys. Rev. E 72, 036209 (2005)]. In particular we reproduce the detailed spatiotemporal spectrum of both square and hexagonal patterns within experimental uncertainty

    Numerical simulation of separated flows

    Get PDF
    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced

    Numerical simulation with light Wilson-quarks

    Full text link
    The computational cost of numerical simulations of QCD with light dynamical Wilson-quarks is estimated by determining the autocorrelation of various quantities. In test runs the expected qualitative behaviour of the pion mass and coupling at small quark masses is observed.Comment: 5 pages, 3 figures, to appear in the Proceedings of SEWM, Heidelberg, 200
    corecore