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Abstract

A numerical simulation program is being constructed having the following

features: (1) infinite circular cylindrical geometry with angle-dependence, (2) in-
K clusion of incident particles, photoelectrons, sécondary électrons, batkscattered
¢ electrons, any gun emissions, and any intefnal curfent pathways including surfate
IR conductive layers, (3)"quasistatic time-cepetident iteration, in which sheath |
- potentidl changes during particle transit times are ignored, (4) use of approximate,
o locally-dependent space charge density expréssions in solving Poissoni's equation
o for sheath potentials, with use of numeri¢a’ orbit-following to determine surface
3 currents, (5) incidént particle vélotity distributions isotropic of beami-like, or

some superposition of these, Rationalés for each of these features are discussed.

L. INTRODUCTION
The asymmetry between sunlit and shaded areds of a sytichiorious spacecraft

is a key feature of the differential spacecraft chargihg problem at synchionhous
altitude. A realistic numerical model for the plasma shéath surrounding a
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synchronous spacecraft must therefore be at least two-dimensional, The only
existing two-dimensional simulation which is complétely solf-consistent is that of
Soop, 1 who did a time-dependetit treatment for a sphere, in which several thousand
photoelectrons were followed numerically. Such time-dependent treatments have
until now provided relatively low aceuracy for a given computdational expense, al-
though there now exist improved intérpolation techiiques for deducing spacé charge
and flux from a limited amount of orbit information, which may change this situation
in the future.

Tiwo other more simplified treatments aré noteworthy, Sehréder? assumed
that photoeléctron émission was spherically symmetric, and theréby obtained a
sélf-consistent solution for a unipotential sphere, which showed the presence of
potential minima due to photoélectron space charge ih some circumstances,

Lafon3 assurhed spherical or cyliidrical symmetry for space charge due to ambient
particles, and négligible perturbation of this symmetry by photoelectrons. He thus
obtained radially symmetric self-consistent sheath potentials, but angle-dependent
photoelectron density profilés, again for unipotential spheres and cylinders.

Heré we describe a two-diménsional self-consistént simulation which avolids a
complétely time-dependeént treatment, but insteod is based oh a '""quasistatie timé-
dependent" iteration deséribed in Séction 2.2. Although résults from three-dimen-
sional simulations are likely to become available in the néar future, 4itis generally
trué that *he simplest realistic simulations are advantageous in elucidating basic
physical effects, whereas more complicatéd ories are most useful for quantitatively
predicting detailed intéractions.

2, FEATURES OF NUMERICAL SPACECRAFT - CHARGING MODEL

2.1 Infinite Citcular Cylindtical Geometty with Angle-Dependence

This géometry implies the usé of a polar coordinate grid for computatiofis.
Several reasons for such a cholce, in preference to the more obvious spherical
géometry, dre:

(1) Although a spherical geometry, with rotational (azimuthal) symmetty
about the spacecraft-sun axts, is two-dimensional in positiofi space, it is three-
diménsional ifi veloeity spacé beeause particles with different azimuthal angular
momenta must be tréated séparately.

(2) Many spacécraft aré finite circular cylifiders.

(3) in spherical geométry with azimuthal symmetry, focusing of particles ohto
the spacecraft-sun axis occurs ih some models, leading to singularities in fluxes
and densities along this axis. Siich effects must be regarded as spurious since
real spacecraft are uniikely to have the high degree of symmetry necessary to
producé thém,
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(4) An infinite ¢ylindee, havifig d surface sector with distinct properties, can
be rotated with respect to the sunward diréction to stuay the cffects of such rota-
tion. In a spherical gcometry with azimuthal symmetry, the corresponding surface
feature would be an annulus about the spacecraft-sun axis, and no such rotation
would be possible without destroying azimuthal symmetry,

(5) One major feature of spherical as opposed to cylindrical geometry, that
is, the more rapld decrease of potential with ihcreasing radius, can be modeled

in an approximate way by simply adding the appropriate fictitious cortribution to
\vj ¢ in Poisson's equation,

2.2 Physicil Processes

The model {3 to iriclude velocity distributions of: incident particles, photo-
electrols, secordary eléctrons, backscattéred electrons, and any gun emissions.
Intérnal current pathways including surface conductive layers are also being
ineluded.

2.3 Quasistatic Time-Dependent Iteration

In this procedure, sheath potential changes during particlé transit times are
ignored. This leads to the following {teration schéme: An angle-dependent sur-
face potential is chosen. Poisson's equation is then solved to ptrovide a radius-
and angle-dependent static sheath potential (see Section 2.4 below). Particle
orbits are then followed numerically ih this potential, yiélding surface charging
rate as a function of angle (orbit-following is, However, not used to provide space
charge densities for Poisson's equation; see Section 2.4 below). These rates are
then averaged ovér any conducting sector, and any currents transferréd ihternally
(including those through any surface conduetive layérs) aré subtracted. The re-
sulting net charging rates are then used to carry forward onetime step, vielding
new surface potentials, This process is then repeated until a steadv-state condi-
tion results, or, in a sitdation in which external conditions vary with time, is
repeatéd to follow such tinme-dependénce,

The use of this procedure, as opposed to a complétély time-dependent simii-
letion, should produte important computational economiés. Clearly oné wili lose
information about very rapid transierit phenomena with thic approach. However,
steady-state or slowly time-varying situatiofis are of mdajor importance, . These
ticlude changes in the incident particle distributionis, which are likely to have time
scdlés of séconds of rinutes,
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2.4 Use of Approximate Spaee-Chirge Bensity Exprensions

At synchronous altitude, the Debye length ap for ambient particlés is usually
2 10 m, so for satellites of ordinary size, effects of ambient space charge on
sheath potentials will bé relatively small, Any reasonably realistic approximation
of this space charge cari therefore be expected to produce only negligible errors in
solviig Poisson's equation for sheath potentials, Furthermore, large savings in
corputer time cah be expected to resu't if one ¢an avoid exact dénsity calculations
involving numerical orbit<following. In the present work, it is intended that a
relatively small amount of orbit-following be done to caléulate surface currents
(Section 2. 3).

A more cignificant space-charge effect near the spacecraft may be caused by
emittéd photoelectrons or secondary eléctrons, 1,2 betause of their relatively low
velocities compared to ambient valués. Howéver, effects of these are likely to
also be small ensugh that any reasonably realistic approximations for their densi-
ties will yield gocd atcuracy. 3 Such approximations must ultimately be validatec
by comparison with a few carefully chosen eéxact calculations. It ic advantageous
if such approxirmatiors depend on lotal poténtial only (rather than potentials at
many locations), togethér with a relatively small nuthbeér of othér parameétérs,
such as spacecraft potentials and potential barriér Leights and locations. Hére we
propose three types of space-charge density approximation, s follows.

2.4.1 APPROXIMATIONS FOR POTENTIAL WELLS WITHOUT

OBSTACLES

Exact density expréssions have béen developed for collisionless, Maxwellian
particles in the presence of obstacle-free potential wells of arbitrary shape by
Laframboise and Parker. 5 The appropriate expression for our pufposes is the
result given by their Eq. (2) for three-dimensional wells. This is true éven for
an "infinite", that is, very long tylindrical spacecraft geometry, because of par-
ticle entry at the eénds of such a geometry. For definiiteness, we consider a
negative well given by ¢ (x, vy, 2z) <0, with¢ - 0 as ®° + y2 +22 . o , whére ¢ is
electric potential. If only ambient particles are considered, Poisson's equation is:

2, .. iN -
v¢-eo (Ne Ni) (1)

where e {s magnitude of unit éléctron charge, e o i8 pirmittivity of space, and Ng,
Nj are eleétron and fon number densities, respectively. Sinceé positive tons are
the attracted species in this well, we usé Eq. (2) of l.aframooise and Parker® foi
ion density, and the usual Boltzmanii factor for electron density, If

Mye = (ebk'[' e/e'z Nqb)l/ 2 N, is electron or fon density faf from the spacacraft,
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L is & ¢haracteristic spaceeraft length, 6 =17 x = edf kT <0,k {s Boltzmann'd
constant and T-is temperature, Eq. (1) becomes: .. . .. ...

. 2 .

~3 /L X _ 8 1/2 1/2

QX = (T) {e - = [(-x Te/Ti) +g (-x Te/Ti) 1} (2)
De F

where g(s) = -i-\ﬁr' exp (sz)ert‘c(s) = exp(sz) fexp(-tz)dt.

s
The important feature of Eq. (2) for our purposes is that its right-hand side
is a function of X only. For small x, Eq. (2) reduces to:

$2x =(1+ Te/'l‘,l)(h/xm)2 X (3)

whére terms of order x 3/2 and higher have been ignored, The linear form of (3)
permits the use of direct Poisson-sgolvers for finding x . Anothér simplified form ; 1
can be obtained by rederiving Eq. (2) with monoenergetic instead of Maxwellian
ions assumed. Theé appropriate monoenergetic velocity distribution (Chen;6

LaframboiSéJ_p_.__M) is: 1

) 2 . )
it emp )t/

Q.

a
AL
i< |2

.
m

(2)

where E1 = 4kTi/ n and m; is ion thass; this distribution duplicates the ambient
number density and flux values of a Maxwellian at temperature Ti‘ Rederivation
of (2) using this distribution yields the computationally simpler form:

~2 L \2 T,
ot ()]

If any regions exist where x > 0, thé rolés of ions and electrons are inter-
changed, and Egs, (2)-(5) must be modified accordingly.
The essential approximation contained in Eqs. (2) - (5) is the neglect of orbit
‘ depletion due to intérsection with the spacécraft. The derisities of ambient fons
and electrons will therefore both be overestimated near the spacecraft in these
Fesults, As long as the spacecraft is at least moderately smaller than Aper the
effeéts of this overestirnaté will be small, Thé attracted-species density will be
overestimated by the greater amount for réasons invelving the curvatures of
attracted tnd repelled particlé orbits, The sheath profiles predicted by (2) or :
" (5) will therefore be steeper than real profilés, if electron emission effects aré j
igriored.

P T U N T
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2.4.2 APPROXIMATIONS PASED ON SYMMETRIC- POTENTIALS..

Laframboise, T and Laframbolge and Codard, 8 Eqs. (7) and (8), have presented
expressions for number dénsities of ambiént attracted and repelled Maxwellian
particles, respectively, whick ar= exact for radially symmetr.ic monotonic poten-
tials near a perfectly absorbing spherical collector. These expréssions contain
terms identical to the ion and elettron density expressions in (2), together with
subtractive terms réprésenting the effects of particle interception by the ¢ollector,
Whippleg has used a thick-sheath approximniation to dévélop density expréssions for
both ambient and emitted particles in the presénce of a potential barrier, again for
spherical symmetry. Lafon3 has developed approximate density expressions for
éscapihg photoé&lectrons, baséd on assumed spherical or cylindrical symmetry in
the sheath potential, but not in the photoemission fluxes. Sincé all of thésé éxpres-
sions depend only on local potértial and a small number of other parameéters, it is
tempting to explore the possibility of using them even in the presénce of sheéath
poténtials which are known to bé anglé-dépendent, and near spacécraft having non-
sphérical shapes. All of these expressions dépend éssentially on the solid angles
subtended at any given radius, by orbits which have intersected the spacécraft,
for all significantly populated particle energies, includin'g7' 8,9 the effects of orbit
curvature due to electrit fields. It is likely that in many cases, such solid angles
will not be greatly modified by angular asymmetries in sheath potentials {{irom
symmetry, such modification must be of second order in angular variations). In
using such approximaiions with irregular spacetraft shapes, it would be necessary
to define somé way of choosing "radius" for substitution into them., Oné way to do
this would involve matching the solid angle subténded by the spacecraft at the
location in question, with that subtended by a sphéré as a function of radius.
Similar procedures wouid be riecéssary for dealing with parametérs describing
10,11 ;14 parker!? have given
useful general discussions of the formulation of density eéxpressions for symmetric.
potentials.

potential barriers in these expressions. Lafon

2.4.3 APPROXIMATIONS BASED ON EQUIVALENT POTENTIAL
WELLS

We consider the idealized situation shown in Figure 1, in whi~h a spacecraft
is asstirhed to have shaded-side surface potentials which aré very negative, and
sunlit-sidé surface potentials which are closé to spacé potential. Thé solid curves
outside the spacecraft répresent equipotentials. The dotted curve FGH représents
a surface which passes through the saddleé point G on the sunlit side, and i{s every-
where perpendicular to the equipoteéiitials, so this siirface represents thé maximirm
extent of a sunlit-side poteritidal barrier for eléctrons. Fahlésonl3 has pointed out
that such a barrier mdy exist everi wheii space chdarge is negligiblé, beceause of the
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Figure 1. Géneral Appearance of a Possible 4
Sheath Potential Profile around a Spacecralft.
Dotted curves mslde the spacecraft surfaée are
fictitious extensions of équipotential surfaces
outside, as deéscribed following Eq. (6)

sunlit-shaded asymmetry in surface potentials, Weé condider as an exariaple the k
process of approximately calculating photoelectron spaceé charge density inside
this barrier; céalculation of secondary electron charge dens ity is similar in most
respects. We consider all those photoelectrons emitted with a total energy Eg
équal (within some differential aniount dE) to the potential of the equipotential
surfaceé ABC. Such particles can never go outside ABC, but must refmpinge on
the spacecraft surface ADC, If Ep(E) is the photoemission ccéfficient, that is,
the energy-differential particle current density of photoemission from the space=- :
craft surface (this will depend on surface material and solar illumination angle), i
then the total.photoemission particlé current between energies Ep and Ep + dE is:

N 2. -
i = dE [/3 $ §p[EB +edg, s] (6)

where EB +epg 2 0, S represents surface position, ¢S = ¢(£s) is surfiace potential,
EB tepy =Ep+edn = 0, and the initegration is over the surface ADC. since €

for most materlals is largest for emission kinetic energles ) m v2 =Ex +e¢ = 1 volt,
most bf the photoémission between énérgies Ep and Ep + dE wlll tend to cbme

from reglons such as, say, A' and C' in Figuré 1, whére ég is about 1 volt more
positive thati at A and C. On the other hand, particlé motions will terd to spread
the reimpirigenient current more uniformly over ADC,

P S,
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We now model this process approximately by mientally rémoving the spaceeraft
surface bétween A and C, and replacing {t by an arbitrary extension AEC of the
equipotential surface ABC. We also do the same for other equipctentials which lie
inside this oné, as also shown in Figure 1. We have now''constructed" an obstacle-
free potential well, and we cafti usé¢ the Laframboise-Parker3 theory to derive
model density and flux profiles for such a well. We can then integrate the latter
ovér ADC and match the result with Eg. (6). We rewvrite the monoenérgetic
distribution (4) for electrons as follows:

2 %
méN G(E-EB)

AT (am /2 @
where N* is now a reference number density to be evaluated. W obtain:

N=N{o@) = [rady = N [1+eo()/Eg) /2 Heb() + Bgl (®)

J= () = frvl &y - N*(EB/Sme)1/2[ 1+e4(2)/Eg] H{ e4(x) + Eg) (9

where J i8 a number flux crossing an arbitrarily oriented surface elément from

either direction, v | is velocity component perpendicular to such a surface element,

and H(8) = f 5(x) dx is the Heaviside step function. The total number flux

erossing ADC from either direction i$ fiow given for our model well by:

- [freg a*s . (10)

Our procedure for approximating the space charge density now involves péer-<
forming the integrations over the siirface ADC in both (6) and. (10), then évaluating
N* by equating these two results. This is dorie for each of the discrete energiés
EB which are chosen to represent the photoemission. The quantity dE {n (6) must
then be chosen equal to the separation between these eénergies. 'The réesulting set
of values N* {s then used together with (8) to construct the space<charge density
expresslon-

N() - B g 1+ed(r)/Egy1 /% Hieb(n) + Egy) (11)

This expréssior also has the advantage of dependence only on local potéritial,
as do those dérived in Séctions 2.4.1 and 2.4. 2. In using it, oné would précal-
culite the coefficients N;' as deseribed above, then use (11) as a contribiition to
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the space charge density in Poisson's equation. Arn important approximation con-
tained in (11) involves neglect of the fact that photoemission fuxes glven by (10)
are in general distributed différently over ADC than those given by (6). For
énergies Ej > -éd > 0, where ¢G is the saddle-point potential in Figure 1, sorhe
photoeléctrons would escape, and the corresponding terms in (11) would be over-
estimateés.

2.5 Use- ol lsotropic or Beam-Like Incident Velocity Distributions

Important computational economies clearly result from assuniing that incident
velocity distributions are either isotropic or beam-liké (monokinetic); the approxi-
mate density expréssions described in Section 2.4 are examples of results for
isotropic distributions. Any intident distribution may be modeled as closely as
desired by a superposition of isotropic and béeam-like distributions.

3. CONCLUSIONS

We have described thé major features of a ''quasistatic time-dependent'
numerical simulation of differential spacecraft charging at synchronous altitude,
incorporating an infinite cylindrieal geometry with anglé-dependence. The com-
putér program involved is presently urder construction.
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