3,577 research outputs found

    Simultaneous Optimal Uncertainty Apportionment and Robust Design Optimization of Systems Governed by Ordinary Differential Equations

    Get PDF
    The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. Designs that ignore uncertainty often lead to poor robustness, suboptimal performance, and higher build costs. Treatment of small geometric uncertainty in the context of manufacturing tolerances is a well studied topic. Traditional sequential design methodologies have recently been replaced by concurrent optimal design methodologies where optimal system parameters are simultaneously determined along with optimally allocated tolerances; this allows to reduce manufacturing costs while increasing performance. However, the state of the art approaches remain limited in that they can only treat geometric related uncertainties restricted to be small in magnitude. This work proposes a novel framework to perform robust design optimization concurrently with optimal uncertainty apportionment for dynamical systems governed by ordinary differential equations. The proposed framework considerably expands the capabilities of contemporary methods by enabling the treatment of both geometric and non-geometric uncertainties in a unified manner. Additionally, uncertainties are allowed to be large in magnitude and the governing constitutive relations may be highly nonlinear. In the proposed framework, uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach allows statistical moments of the uncertain system to be explicitly included in the optimization-based design process. The framework formulates design problems as constrained multi-objective optimization problems, thus enabling the characterization of a Pareto optimal trade-off curve that is off-set from the traditional deterministic optimal trade-off curve. The Pareto off-set is shown to be a result of the additional statistical moment information formulated in the objective and constraint relations that account for the system uncertainties. Therefore, the Pareto trade-off curve from the new framework characterizes the entire family of systems within the probability space; consequently, designers are able to produce robust and optimally performing systems at an optimal manufacturing cost. A kinematic tolerance analysis case-study is presented first to illustrate how the proposed methodology can be applied to treat geometric tolerances. A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to produce an optimal design at an optimal manufacturing cost, accounting for the entire family of systems within the associated probability space. This case-study highlights the general nature of the new framework which is capable of optimally allocating uncertainties of multiple types and with large magnitudes in a single calculation

    Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model

    Full text link
    This work aims at identifying and quantifying uncertainties related to elastic and viscoelastic parameters, which characterize the arterial wall behavior, in one-dimensional modeling of the human arterial hemodynamics. The chosen uncertain parameters are modeled as random Gaussian-distributed variables, making stochastic the system of governing equations. The proposed methodology is initially validated on a model equation, presenting a thorough convergence study which confirms the spectral accuracy of the stochastic collocation method and the second-order accuracy of the IMEX finite volume scheme chosen to solve the mathematical model. Then, univariate and multivariate uncertain quantification analyses are applied to the a-FSI blood flow model, concerning baseline and patient-specific single-artery test cases. A different sensitivity is depicted when comparing the variability of flow rate and velocity waveforms to the variability of pressure and area, the latter ones resulting much more sensitive to the parametric uncertainties underlying the mechanical characterization of vessel walls. Simulations performed considering both the simple elastic and the more realistic viscoelastic constitutive law show that the great uncertainty of the viscosity parameter plays a major role in the prediction of pressure waveforms, enlarging the confidence interval of this variable. In-vivo recorded patient-specific pressure data falls within the confidence interval of the output obtained with the proposed methodology and expectations of the computed pressures are comparable to the recorded waveforms

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Parameter estimation for macroscopic pedestrian dynamics models from microscopic data

    Get PDF
    In this paper we develop a framework for parameter estimation in macroscopic pedestrian models using individual trajectories -- microscopic data. We consider a unidirectional flow of pedestrians in a corridor and assume that the velocity decreases with the average density according to the fundamental diagram. Our model is formed from a coupling between a density dependent stochastic differential equation and a nonlinear partial differential equation for the density, and is hence of McKean--Vlasov type. We discuss identifiability of the parameters appearing in the fundamental diagram from trajectories of individuals, and we introduce optimization and Bayesian methods to perform the identification. We analyze the performance of the developed methodologies in various situations, such as for different in- and outflow conditions, for varying numbers of individual trajectories and for differing channel geometries

    A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation

    Get PDF
    In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic behavior which can be either hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge-Kutta methods for hyperbolic systems with relaxation loose their efficiency and a different approach should be adopted to guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable to capture the correct asymptotic limit of the system independently of the scaling used. Several numerical examples confirm our theoretical analysis

    Discrete Second Order Adjoints in Atmospheric Chemical Transport Modeling

    Get PDF
    Atmospheric chemical transport models (CTMs) are essential tools for the study of air pollution, for environmental policy decisions, for the interpretation of observational data, and for producing air quality forecasts. Many air quality studies require sensitivity analyses, i.e., the computation of derivatives of the model output with respect to model parameters. The derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through adjoint sensitivity analysis. While the traditional (first order) adjoint models give the gradient of the cost functional with respect to parameters, second order adjoint models give second derivative information in the form of products between the Hessian of the cost functional and a user defined vector. In this paper we discuss the mathematical foundations of the discrete second order adjoint sensitivity method and present a complete set of computational tools for performing second order sensitivity studies in three-dimensional atmospheric CTMs. The tools include discrete second order adjoints of Runge Kutta and of Rosenbrock time stepping methods for stiff equations together with efficient implementation strategies. Numerical examples illustrate the use of these computational tools in important applications like sensitivity analysis, optimization, uncertainty quantification, and the calculation of directions of maximal error growth in three-dimensional atmospheric CTMs
    • …
    corecore