3,211 research outputs found

    A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

    Full text link
    We performed a comprehensive scaling study of Schottky barrier carbon nanotube transistors using self-consistent, atomistic scale simulations. We restrict our attention to Schottky barrier carbon nanotube FETs whose metal source/drain is attached to an intrinsic carbon nanotube channel. Ambipolar conduction is found to be an important factor that must be carefully considered in device design, especially when the gate oxide is thin. The channel length scaling limit imposed by source-drain tunneling is found to be between 5nm and 10nm, depending on the off-current specification. Using a large diameter tube increases the on-current, but it also increases the leakage current. Our study of gate dielectric scaling shows that the charge on the nanotube can play an important role above threshold.Comment: 26 pages, 8 figure

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Shot noise suppression in quasi one-dimensional Field Effect Transistors

    Full text link
    We present a novel method for the evaluation of shot noise in quasi one-dimensional field-effect transistors, such as those based on carbon nanotubes and silicon nanowires. The method is derived by using a statistical approach within the second quantization formalism and allows to include both the effects of Pauli exclusion and Coulomb repulsion among charge carriers. In this way it extends Landauer-Buttiker approach by explicitly including the effect of Coulomb repulsion on noise. We implement the method through the self-consistent solution of the 3D Poisson and transport equations within the NEGF framework and a Monte Carlo procedure for populating injected electron states. We show that the combined effect of Pauli and Coulomb interactions reduces shot noise in strong inversion down to 23 % of the full shot noise for a gate overdrive of 0.4 V, and that neglecting the effect of Coulomb repulsion would lead to an overestimation of noise up to 180 %.Comment: Changed content, 7 pages,5 figure

    A Three-dimensional simulation study of the performance of Carbon Nanotube Field Effect Transistors with doped reservoirs and realistic geometry

    Full text link
    In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Green's Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different gate configurations and geometry parameters shows that double gate devices offer quasi ideal subthreshold slope and DIBL without extremely thin gate dielectrics. Exploration of devices with parallel CNTs show that On currents per unit width can be significantly larger than the silicon counterpart, while high-frequency performance is very promising.Comment: Submitted to IEEE TE

    Analytical model of 1D Carbon-based Schottky-Barrier Transistors

    Full text link
    Nanotransistors typically operate in far-from-equilibrium (FFE) conditions, that cannot be described neither by drift-diffusion, nor by purely ballistic models. In carbonbased nanotransistors, source and drain contacts are often characterized by the formation of Schottky Barriers (SBs), with strong influence on transport. Here we present a model for onedimensional field-effect transistors (FETs), taking into account on equal footing both SB contacts and FFE transport regime. Intermediate transport is introduced within the Buttiker probe approach to dissipative transport, in which a non-ballistic transistor is seen as a suitable series of individually ballistic channels. Our model permits the study of the interplay of SBs and ambipolar FFE transport, and in particular of the transition between SB-limited and dissipation-limited transport

    Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    Full text link
    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube electronics. We focus in this paper on one element of that hierarchy, the simulation of ballistic CNTFETs by self-consistently solving the Poisson and Schrodinger equations using the non-equilibrium Greens function (NEGF) formalism. The NEGF transport equation is solved at two levels: i) a semi-empirical atomistic level using the pz orbitals of carbon atoms as the basis, and ii) an atomistic mode space approach, which only treats a few subbands in the tube-circumferential direction while retaining an atomistic grid along the carrier transport direction. Simulation examples show that these approaches describe quantum transport effects in nanotube transistors. The paper concludes with a brief discussion of how these semi-empirical device level simulations can be connected to ab initio, continuum, and circuit level simulations in the multi-scale hierarchy
    • …
    corecore