1,338 research outputs found

    Pendekatan Numerik pada Model Penyebaran SARS dengan Method Of Lines

    Full text link
    Pada paper ini dikaji pendekatan numerik model matematika penyebaran SARS dengan adanya suku difusi. Suku difusi pada model tersebut mengilustrasikan penyebaran SARS berdasarkan lokasi. Solusi numerik dilakukan dengan menggunakan Method of Lines. Selanjutnya dibandingkan hasil simulasi numerik antara model penyebaran SARS tanpa suku difusi dan dengan adanya suku difusi. Hasil simulasi dari model penyebaran penyakit SARS tanpa suku difusi hanya menunjukkan terjadinya penyebaran SARS secara periodik waktu. Berdasarkan hasil simulasi pada model SARS dengan adanya suku difusi dapat diketahui bahwa penyebaran SARS dapat ditinjau dari titik awal penyebaran SARS secara spasial dan juga perodik waktu. Lebih lanjut, dari hasil simulasi menunjukkan bahwa semakin jauh dari pusat penyebaran SARS, laju penyebaran penyakit SARS akan semakin keci

    Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models

    Get PDF
    When is it better to use agent based (AB) models, and when should differential equation (DE) models be used? Where DE models assume homogeneity and perfect mixing within compartments, AB models can capture heterogeneity in agent attributes and in the network of interactions among them. Using contagious disease as an example, we contrast the dynamics of AB models with those of the corresponding mean-field DE model, specifically, comparing the standard SEIR model-a nonlinear DE-to an explicit AB model of the same system. We examine both agent heterogeneity and the impact of different network structures, including fully connected, random, Watts-Strogatz small world, scale-free, and lattice networks. Surprisingly, in many conditions the AB and DE dynamics are quite similar. Differences between the DE and AB models are not statistically significant on key metrics relevant to public health, including diffusion speed, peak load on health services infrastructure and total disease burden. We explore the conditions under which the AB and DE dynamics differ, and consider implications for managing infectious disease. The results extend beyond epidemiology: from innovation adoption to the spread of rumor and riot to financial panics, many important social phenomena involve analogous processes of diffusion and social contagion

    Heterogeneous length of stay of hosts’ movements and spatial epidemic spread

    Get PDF
    Infectious diseases outbreaks are often characterized by a spatial component induced by hosts’ distribution, mobility, and interactions. Spatial models that incorporate hosts’ movements are being used to describe these processes, to investigate the conditions for propagation, and to predict the spatial spread. Several assumptions are being considered to model hosts’ movements, ranging from permanent movements to daily commuting, where the time spent at destination is either infinite or assumes a homogeneous fixed value, respectively. Prompted by empirical evidence, here we introduce a general metapopulation approach to model the disease dynamics in a spatially structured population where the mobility process is characterized by a heterogeneous length of stay. We show that large fluctuations of the length of stay, as observed in reality, can have a significant impact on the threshold conditions for the global epidemic invasion, thus altering model predictions based on simple assumptions, and displaying important public health implications

    Identifying Infection Sources and Regions in Large Networks

    Full text link
    Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a social network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators

    A framework for epidemic spreading in multiplex networks of metapopulations

    Get PDF
    We propose a theoretical framework for the study of epidemics in structured metapopulations, with heterogeneous agents, subjected to recurrent mobility patterns. We propose to represent the heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes would correspond to geographical areas and layers account for the mobility patterns of agents of the same class. We analyze both the classical Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models within this framework, and compare macroscopic and microscopic indicators of the spreading process with extensive Monte Carlo simulations. Our results are in excellent agreement with the simulations. We also derive an exact expression of the epidemic threshold on this general framework revealing a non-trivial dependence on the mobility parameter. Finally, we use this new formalism to address the spread of diseases in real cities, specifically in the city of Medellin, Colombia, whose population is divided into six socio-economic classes, each one identified with a layer in this multiplex formalism.Comment: 13 pages, 11 figure

    Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples

    Get PDF
    We examine the spatial modeling of the outbreak of COVID-19 in two regions: the autonomous community of Andalusia in Spain and the mainland of Greece. We start with a 0D compartmental epidemiological model consisting of Susceptible, Exposed, Asymptomatic, (symptomatically) Infected, Hospitalized, Recovered, and deceased populations. We emphasize the importance of the viral latent period and the key role of an asymptomatic population. We optimize model parameters for both regions by comparing predictions to the cumulative number of infected and total number of deaths via minimizing the â„“2\ell^2 norm of the difference between predictions and observed data. We consider the sensitivity of model predictions on reasonable variations of model parameters and initial conditions, addressing issues of parameter identifiability. We model both pre-quarantine and post-quarantine evolution of the epidemic by a time-dependent change of the viral transmission rates that arises in response to containment measures. Subsequently, a spatially distributed version of the 0D model in the form of reaction-diffusion equations is developed. We consider that, after an initial localized seeding of the infection, its spread is governed by the diffusion (and 0D model "reactions") of the asymptomatic and symptomatically infected populations, which decrease with the imposed restrictive measures. We inserted the maps of the two regions, and we imported population-density data into COMSOL, which was subsequently used to solve numerically the model PDEs. Upon discussing how to adapt the 0D model to this spatial setting, we show that these models bear significant potential towards capturing both the well-mixed, 0D description and the spatial expansion of the pandemic in the two regions. Veins of potential refinement of the model assumptions towards future work are also explored.Comment: 28 pages, 16 figures and 2 movie
    • …
    corecore