7,993 research outputs found

    Efficient preconditioning of the method of lines for solving nonlinear two-sided space-fractional diffusion equations

    Get PDF
    A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator

    A discrete least squares collocation method for two-dimensional nonlinear time-dependent partial differential equations

    Full text link
    In this paper, we develop regularized discrete least squares collocation and finite volume methods for solving two-dimensional nonlinear time-dependent partial differential equations on irregular domains. The solution is approximated using tensor product cubic spline basis functions defined on a background rectangular (interpolation) mesh, which leads to high spatial accuracy and straightforward implementation, and establishes a solid base for extending the computational framework to three-dimensional problems. A semi-implicit time-stepping method is employed to transform the nonlinear partial differential equation into a linear boundary value problem. A key finding of our study is that the newly proposed mesh-free finite volume method based on circular control volumes reduces to the collocation method as the radius limits to zero. Both methods produce a large constrained least-squares problem that must be solved at each time step in the advancement of the solution. We have found that regularization yields a relatively well-conditioned system that can be solved accurately using QR factorization. An extensive numerical investigation is performed to illustrate the effectiveness of the present methods, including the application of the new method to a coupled system of time-fractional partial differential equations having different fractional indices in different (irregularly shaped) regions of the solution domain
    corecore