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Abstract: A standard method for the numerical solution of partial differential equations (PDEs)
is the method of lines. In this approach the PDE is discretised in space using finite differences or
similar techniques, and the resulting semidiscrete problem in time is integrated using an initial
value problem solver.
A significant challenge when applying the method of lines to fractional PDEs is that the non-local
nature of the fractional derivatives results in a discretised system where each equation involves
contributions from many (possibly every) spatial node(s). This has important consequences for
the efficiency of the numerical solver. First, since the cost of evaluating the discrete equations
is high, it is essential to minimise the number of evaluations required to advance the solution
in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods
that avoid the need to form and factorise this matrix are preferred.
In this paper, we consider a nonlinear two-sided space-fractional diffusion equation in one spatial
dimension. A key contribution of this paper is to demonstrate how an effective preconditioner
is crucial for improving the efficiency of the method of lines for solving this equation. In
particular, we show how to construct suitable banded approximations to the system Jacobian for
preconditioning purposes that permit high orders and large stepsizes to be used in the temporal
integration, without requiring dense matrices to be formed. The results of numerical experiments
are presented that demonstrate the effectiveness of this approach.

Keywords: Nonlinear two-sided space-fractional diffusion equation; method of lines;
Jacobian-free Newton-Krylov; banded preconditioning; finite differences

1. INTRODUCTION

In this paper we show how to construct an effective
preconditioner for solving the nonlinear two-sided space-
fractional diffusion equation

∂u

∂t
= κ(u, x, t)

[
p
∂αu

∂xα
+ (1− p) ∂αu

∂(−x)α

]
+ q(u, x, t) (1)

using the method of lines, on the finite domain 0 < x <
L with homogeneous Dirichlet boundary conditions and
initial condition u(x, 0) = u0(x). The fractional order α
is assumed to satisfy 1 < α ≤ 2. The function u(x, t)
can be interpreted as representing the concentration of
a particle plume undergoing superdiffusion. The diffusion
coefficient κ(u, x, t) is assumed positive, and the forcing
function q(u, x, t) represents sources or sinks.

This equation has been discussed previously by Meer-
schaert and Tadjeran (2006), who considered the linear
case. Here we consider the full nonlinear problem, where κ
and q can be concentration-, space- and time-dependent.

Meerschaert and Tadjeran (2006) give the interpretation of
the skewnesses p ∈ [0, 1] in terms of forward and backward
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jump probabilities in a stochastic model for anomalous
diffusion. If p = 0 or p = 1 then (1) reduces to a one-sided
space-fractional diffusion equation.

The left and right Riemann-Liouville space-fractional
derivatives are defined by

∂αu

∂xα
=

1

Γ(m− α)

dm

dxm

∫ x

0

u(ξ, t)

(x− ξ)α−m+1
dξ (2)

and

∂αu

∂(−x)α
=

(−1)m

Γ(m− α)

dm

dxm

∫ L

x

u(ξ, t)

(ξ − x)α−m+1
dξ (3)

with the integer m defined by m − 1 < α ≤ m. The
restriction on the fractional order discussed above means
that m = 2 in this paper.

The method of lines for space-fractional PDEs has been
used by a number of authors previously. Liu et al. (2004)
used the method of lines to solve a fractional Fokker-
Planck equation. Zhuang et al. (2009) used the method of
lines to solve a variable-order fractional advection-diffusion
equation. Yang et al. (2010) used the method of lines to
solve a Reisz space fractional PDE.

The focus of this paper is to demonstrate how an effective
preconditioner is crucial for improving the efficiency of the
method of lines for solving the nonlinear two-sided space-



fractional diffusion equation (1). In particular, we show
how to construct suitable banded approximations to the
system Jacobian for preconditioning purposes that permit
high orders and large stepsizes to be used in the temporal
integration, without requiring dense matrices to be formed
and factorised. This allows for the solution to be obtained
using many more spatial nodes than would be possible
with a method using direct Jacobian factorisation.

Krylov subspace iterative methods play a key role in
our approach. Several authors have recently had success
using Krylov subspace methods for solving space-fractional
diffusion equations, including Ilić et al. (2008), Yang et al.
(2011a,b) and Burrage et al. (2011). In these papers,
Krylov subspace methods are used in the context of matrix
function approximations for fractional Laplace equations.
The present work is the only work we are aware of that uses
preconditioned Krylov subspace methods to solve space-
fractional differential equations using the method of lines.

The remainder of the paper is arranged as follows. In sec-
tion 2 we present a finite difference spatial discretisation of
(1) and show how it leads to a system of time ordinary dif-
ferential equations. In section 3 we summarise the method
of backward differentiation formulas for integrating initial
value problems. The role of preconditioning is highlighted.
In section 4 we derive a banded preconditioner that is
suitable for the nonlinear two-sided space-fractional diffu-
sion equation, and show how to construct it efficiently. In
section 5 we present the results of numerical experiments
that confirm that the preconditioner allows for the efficient
solution of equation (1) using the method of lines. We draw
our conclusions in section 6.

2. FINITE DIFFERENCE DISCRETISATION

To spatially discretise (1) using finite differences, we intro-
duce a mesh withN uniform divisions of width ∆x = L/N ,
and N+1 nodes xi, i = 0 . . . N where xi = i∆x. Meer-
schaert and Tadjeran (2006) show how shifted Grünwald
formulas may be used to approximate the space fractional
derivatives ∂αu(xi, t)/∂x

α and ∂αu(xi, t)/∂(−x)α by a
weighted sum of neighbouring values u(xj , t). Using this
approach, we obtain the spatial discretisation

dui
dt

=
κi

∆xα

p i∑
j=0

gj ui−j+1 + (1− p)
N−i∑
j=0

gj ui+j−1

+ qi

(4)
for i = 1, . . . , N − 1, where ui(t) denotes the discrete ap-
proximation to u(xi, t), κi(t) means κ(ui, xi, t) (similarly
qi) and the normalised Grünwald weights gj are given by

g0 = 1 , gj = (−1)j
α(α− 1) . . . (α− j + 1)

j!
, j = 1, 2, . . . .

(5)

When combined with the initial condition u(xi, 0) =
u0(xi), i = 1 . . . N − 1, the system generated by imposing
(4) at each internal node can be written as the initial value
problem (IVP)

du

dt
= f(t,u), u(t0) = u0 (6)

where the components of the vector u are the unknowns
ui, the components of the vector-valued function f come

from the right hand side of (4) and the components of u0

are the initial values.

As is discussed in the next section, the Jacobian matrix
J = ∂f/∂u plays an important role in the numerical
solution of (6). A distinguishing characteristic of space
fractional PDEs is that finite difference discretisations of
these problems give rise to Jacobian matrices which are
fully or partially dense.

The Jacobian matrix for (4) will be fully dense if 0 < p < 1,
since together the two summations in (4) range over all
uj , implying that every component of u appears in every
equation. For p = 0 or p = 1, only one sum remains, and
the Jacobian matrix has a Hessenberg structure.

3. SOLUTION OF INITIAL VALUE PROBLEMS
WITH BACKWARD DIFFERENTIATION

FORMULAS AND JACOBIAN-FREE
NEWTON-KRYLOV METHODS

3.1 Backward differentiation formulas

In this section, we discuss the use of backward differenti-
ation formulas for solving (6), with special attention paid
to the role of the Jacobian matrix, and the impact of its
density on the efficiency of the approach.

The backward differentiation formulas (BDFs) comprise a
family of implicit linear multistep methods for solving the
initial value problem (6). Numerous IVP solvers utilising
BDFs are available – the implementation used for this
paper is the CVODE solver which is part of the SUNDI-
ALS suite of nonlinear and differential/algebraic equation
solvers (Hindmarsh et al., 2005).

We introduce BDFs by considering how to step from time
t = tn−1, at which point the numerical solution un−1 ≈
u(tn−1) is known, to the next point in time tn = tn−1+hn,
where hn is the stepsize. The derivation follows that of
Hindmarsh et al. (2005).

The defining characteristic of BDFs is the approximation
of the derivative du(tn)/dt in terms of present and past
values of u:

du(tn)/dt ≈ 1

hn

q∑
k=0

αn,kun−k (7)

where q is the order of the BDF, and the coefficients
αn,k depend on the recent stepsize and order history. The
backward Euler method is the simplest and best-known
BDF; it corresponds to q = 1 (first order), with coefficients
αn,0 = 1 and αn,1 = −1.

Modern BDF-based IVP solvers use sophisticated algo-
rithms to adaptively vary both the stepsize hn and the
order q in order to achieve a desired local error tolerance
at each step, while keeping the stepsize as large as possible.
This is a key advantage of such solvers over hand-coded
backward Euler or similar methods; they offer high perfor-
mance temporal integration using complex algorithms that
have been subject to extensive testing and peer review, and
which would be time-consuming to implement manually.

Evaluating (6) at t = tn, substituting (7) and rearranging
for the unknown un yields the nonlinear algebraic equation

gn(un) := un − γnf(tn,un) + an = 0 (8)



where γn = hn/αn,0 and an =
∑q
k=1(αn,k/αn,0)un−k.

This equation must be solved to advance the numerical
solution in time.

Newton’s method applied to (8) yields the iteration

uk+1
n = ukn + δukn (9)

where ukn is the kth iterate in the sequence {ukn}∞k=0 → un
and the correction vector δukn is found by solving

(I− γnJ(ukn))δukn = −gn(ukn) (10)

which is a linear system involving the Jacobian matrix
J = ∂f/∂u.

3.2 Jacobian-free Newton-Krylov methods

Modern IVP solvers use Krylov subspace methods to solve
the linear system (10). Briefly, a Krylov subspace method
for the system Ax = b seeks an approximate solution x̃
by projecting onto the Krylov subspace

Km(A,b) = span{b,Ab, . . . ,Am−1b} (11)

(Saad, 1999). Such methods require the action of the
matrix A only in the form of matrix-vector products on
suitably-chosen vectors v. In the context of the linear
system (10), we have

A = I− γnJ(ukn) (12)

and a key observation is that the product J(ukn)v can be
approximated by a first order forward difference

J(ukn)v ≈ f(tn,u
k
n + εv)− f(tn,u

k
n)

ε
(13)

with suitably-chosen shift value ε (Knoll and Keyes, 2004).

In this way, a solution to (10) may be found without
ever forming the Jacobian matrix J. This Jacobian-free
approach, combined with Newton’s method, leads to a
class of Jacobian-free Newton-Krylov (JFNK) methods for
solving (8) (Knoll and Keyes, 2004).

In the context of the nonlinear two-sided space-fractional
diffusion equation (1), IVP solvers that utilise JFNK
methods are particularly attractive. We saw in section 2
that the Jacobian matrix for this problem is dense, and
hence the ability to solve it without needing to form and
factorise this matrix represents a significant saving.

Furthermore, the adaptive order and stepsize selections
made by the IVP solver are designed to reduce the number
of steps required to advance the solution in time. This
represents a further saving over non-adaptive methods,
which may require additional steps to achieve the same
level of accuracy for a given point in time.

In spite of these facts, it is well-known that BDF-based
solvers can suffer from poor performance when applied to
stiff problems (Hindmarsh et al., 2005; Knoll and Keyes,
2004). Krylov subspace methods that project onto the
space (11) typically do not achieve an acceptable rate of
convergence for these problems.

Preconditioning is the standard approach for overcoming
this issue, so that rather than solve Ax = b directly, the
preconditioned system 2

(AM−1)(Mx) = b,

2 This is preconditioning on the right. Preconditioning on the left is
also possible, but not considered in this paper.

is used to solve for z = Mx by projecting onto the
preconditioned Krylov subspace

Km(AM−1,b) = span{b,AM−1b, . . . , (AM−1)m−1b} .
(14)

Here M is a preconditioner matrix which in some sense
approximates A, but whose inverse can be efficiently ap-
plied. A typical approach for forming such a preconditioner
matrix is to form an (often quite crude) approximation to
the Jacobian matrix J itself, and then construct M by way
of equation (12) (Knoll and Keyes, 2004).

Furthermore, modern IVP solvers do not insist that the
preconditioner always be kept up to date. Instead, they
include logic to detect when an out-of-date preconditioner
is hindering convergence, and only then is the user code
to update the matrix invoked (Hindmarsh et al., 2005).

4. A BANDED PRECONDITIONER

In this section, we derive a banded preconditioner for
the nonlinear two-sided space-fractional diffusion equation
(1), which overcomes the problem of stiffness and allows
efficient solution of the problem using BDF-based IVP
solvers. We begin in section 4.1 by illustrating the process
for a linear problem, before generalising the approach to
the full nonlinear problem in section 4.2.

4.1 Linear case with κ constant and q = q(x, t)

We seek an approximation of the Jacobian matrix which
is cheap to compute and invert, but which captures the
dominant source of stiffness in the problem. To illustrate
the idea, we first consider the simpler, linear problem
of equation (1) with κ constant, and q = q(x, t). By
examining the right hand side of the spatially discrete form
(4) we find that the Jacobian matrix, J, for this problem
has the form

(J)ij =
κ

∆xα
×



pgi−j+1, j < i− 1

pg2 + (1− p)g0, j = i− 1

g1, j = i

pg0 + (1− p)g2, j = i+ 1

(1− p)gj−i+1, j > i+ 1

. (15)

Recalling definition (5) of the normalised Grünwald
weights, the key observation from (15) is that the magni-
tudes of the entries (J)ij become smaller as |i−j| increases.
That is, the entries become smaller, the further from the
diagonal they are. This is consistent with the physical
notion that the concentration at a given point is influenced
more strongly by the concentration at points nearby, and
less strongly by the concentration at points far away.

In Fig. 1 we plot the magnitude of the Jacobian’s entries
for the problem (4) with κ = 1, p = 0.5, α = 1.8, q = 0
and N = 4000 to illustrate this point. The figure strongly
suggests that the dominant behaviour of this problem is
captured by the values within the dark diagonal strip of
small bandwidth. This motivates the idea of retaining
only the values within this small bandwidth and using
the resulting matrix to form a preconditioner. Standard
banded or sparse data structures and algorithms allow for
the efficient storage and factorisation of this matrix, with
substantial savings compared to the cost of forming and
factorising the full Jacobian.
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Fig. 1. Log to base 10 of the magnitude of the Jacobian’s
entries for problem (4) with κ = 1, p = 0.5, α =
1.8, q = 0 and N = 4000. Black indicates largest
magnitude, through grey and then white for smallest
magnitude.

4.2 General, nonlinear case

While the preceding discussion motivates the use of a
banded Jacobian approximation, in practice it can be
inconvenient to form it directly by means of (15). Indeed,
for problems with variable κ or a source term q dependent
on u, equation (15) is no longer correct, and would need
to be re-derived accordingly.

Fortunately there is a straightforward means of approx-
imating the banded Jacobian which applies for general
nonlinear problems. First, we observe that a single column
of the Jacobian matrix can be approximated by a first
order forward difference in the manner of (13):

J•j(u) = J(u)ej ≈
f(t,u + ε ej)− f(t,u)

ε
(16)

where J•j means the jth column of J and ej is the
jth coordinate vector (zero elements except for a one in
position j). Equation (16) thus provides a means to build
up a finite difference approximation of the Jacobian one
column at a time, by shifting one component of u at a
time.

We make several improvements to the efficiency of this ba-
sic approach. First, we exploit the (approximately) banded
nature of the Jacobian and shift multiple components of
u at a time, which are separated from one another by a
distance of one bandwidth (Kelley, 2003). For example, if
the bandwidth is 5, then in our first evaluation we shift u1,
u6, u11 and so forth. For our second evaluation we shift
u2, u7, u12 and so forth. In this way, a finite difference
approximation to the Jacobian is constructed with just 5
(the bandwidth) additional evaluations of the function f .

While this approach is the standard means of approximat-
ing banded Jacobians (Kelley, 2003), it should be noted
that as the Jacobian in our problem is only approximately
banded, this approach does introduce some small addi-
tional error into the computed values. In our numerical
experiments this additional error was found to be of no
consequence.
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Fig. 2. Time taken to solve test problem 1 to time t = 1
versus the bandwidth of the preconditioner used.

The second efficiency improvement we make is to recognise
that when evaluating f with shifted components (a “shifted
evaluation”), we can recycle most of the information from
the prior unshifted evaluation.

For the nonlinear two-sided space-fractional discretisation,
the greatest expense in an evaluation of f is computing
the two sums in equation (4). We exploit this by keeping
auxiliary vectors of “unshifted sums”; two vectors of the
same length as u are all that is required. These vectors are
updated every time an unshifted evaluation is performed.
Then, for all subsequent subsequent shifted evaluations,
only small adjustments to these stored sums are necessary,
corresponding to the terms which involve the shifted
components.

In the next section we present the results of some numer-
ical experiments that demonstrate the effectiveness of the
overall method for solving equation (1).

5. NUMERICAL EXPERIMENTS

All numerical experiments were carried out in MATLAB
version R2011a, 64-bit edition, using the CVODE IVP
solver, part of the SUNDIALS suite of nonlinear and
differential/algebraic equation solvers (Hindmarsh et al.,
2005). Absolute and relative error tolerances were set
to 10−6 and preconditioned GMRES (Saad and Schultz,
1986) was used for the Krylov subspace method. We used
MATLAB’s native sparse data structure and algorithms to
store and factorise the banded Jacobian (MATLAB does
not natively support band matrix storage – for a discussion
of this design choice see Gilbert et al. (1992)). The test
machine used an Intel Core i7 processor and 4 GB of RAM.

5.1 Test problem 1: linear

We consider equation (1) with parameters κ = 1, p = 0.5,
α = 1.8, q = 0, with N = 4000 spatial divisions and initial
condition u0(x) = x(1− x). The structure of the Jacobian
matrix for this problem was illustrated in Fig. 1.

We begin by examining the effect that the bandwidth of
the Jacobian matrix used to form the preconditioner has
on the efficiency of the scheme. Fig. 2 plots the runtime
taken to simulate to t = 1 against the bandwidth. As this is
a linear problem, the Jacobian matrix needs to be formed
just once, and we use the formulas (15) to compute all
values within the chosen bandwidth.

From Fig. 2 we see that for bandwidths less than about
10, the BDF-based solver is not efficient and we conclude
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Fig. 3. Log to base 10 of the magnitude of the banded
Jacobian approximation’s entries for test problem 1.
Black indicates largest magnitude, through grey for
smaller magnitudes and white for zero. The colour
scale is identical to that of Fig. 1 so that the two
figures are directly comparable.

that the preconditioner is not adequately capturing the
behaviour of the problem. We note that the vertical axis on
this plot has been truncated to preserve space; the runtime
for a bandwidth of 3 (tridiagonal preconditioner) is more
than 140 seconds, and with no preconditioning at all it
takes more than 400 seconds to solve.

As the bandwidth increases, the runtime improves, until it
attains a minimum value for this problem of approximately
16 seconds with bandwidth 121. At this point, we conclude
that all of the important behaviour in the problem is
being captured by the banded Jacobian approximation.
Increasing the bandwidth further from this point tends to
increase the runtime, as the costs associated with forming
and factorising the larger bandwidth matrix become more
significant. The interesting (and reproducible) dip in run-
time at bandwidth 641 is caused by a sudden improvement
in the efficiency of MATLAB’s sparse LU factorisation (by
some 25%!) at this and higher bandwidths.

In Fig. 3 we plot the magnitude of the banded Jacobian
approximation’s entries when the bandwidth is 121. We
observe that a bandwidth of 121 corresponds to the dark
diagonal strip first exhibited in Fig. 1. Hence, we have
further confirmation that this portion of the matrix is
sufficient to capture the dominant problem behaviour in
terms of constructing an effective preconditioner.

To further explore the effect of the preconditioner on the
efficiency of the solver, we examine how the order of the
BDF and the stepsize evolve over two runs of the solver:
one using bandwidth 3, which we know from the previous
discussion to be too small, and the other using bandwidth
121, which we identified as being optimal for this problem.

Fig. 4 plots the order and stepsize evolution for both runs;
order is indicated by a solid line and stepsize by a dashed
line. In Fig. 4(a), where a bandwidth of 3 was used, we see
that the stepsizes increase rapidly at first, and the order of
the BDF rises to 4. However, the order quickly falls back
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Fig. 4. Order and stepsize evolution for test problem 1
with: (a) preconditioner bandwidth of 3; (b) precon-
ditioner bandwidth of 121.

to 2, and the stepsize evolution is erratic for the remainder
of the simulation.

For a bandwidth of 121, Fig. 4(b) reveals a different pic-
ture. The order rises to 4 and remains there for the rest of
the simulation, while the stepsizes increase monotonically
throughout. As a result, the solver with bandwidth 121 is
able to reach the final time t = 1 using just 64 steps and
151 function evaluations, compared with 156 steps and
1552 function evaluations required with bandwidth 3.

The large discrepancy in the number of function evalua-
tions between the two runs is a result of the many addi-
tional iterations required to converge the JFNK method
when the preconditioner is not performing adequately.
This emphasises the fact that the preconditioner functions
not only to reduce the number of steps required, but also
to reduce the amount of work required per step.

5.2 Test problem 2: nonlinear

We now consider the nonlinear problem of equation (1)
with κ = 0.05u0.3, p = 0.5, α = 1.6, q = 2u2(1 − u)
and initial condition u0(x) = x(1− x). We choose a mesh
comprising N = 16000 divisions, as this represents a
level of refinement for which standard direct factorisation
methods using the full Jacobian are beyond the capacity
of the test machine. To construct the preconditioner for
this nonlinear problem we use the banded finite difference
approximation to the Jacobian matrix discussed in section
4.2, with a bandwidth of 301.

Solving the problem to steady-state took 595 seconds
using the test machine. The evolution of the order and
stepsize is illustrated in Fig. 5. We see that for the bulk of
the integration, the solver was operating at either fourth
or fifth order, and the stepsizes increased monotonically
throughout. As the solution approached its steady state,
there was a rapid increase in the stepsizes, and the order of
the method was able to drop back to first order, by which
point the solution was essentially unchanging in time.
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Fig. 5. Order and stepsize evolution for test problem 2 with
preconditioner bandwidth of 301.

The figure suggests that the method performed close to
optimally in terms of the size of the steps taken, confirm-
ing the effectiveness of the preconditioner. The relevant
statistics for the simulation are that 125 steps were taken,
the banded Jacobian approximation was formed 3 times
and a total of 1322 function evaluations were required. Of
those evaluations, 903 were shifted evaluations associated
with forming the banded Jacobian approximation, and
the remaining 419 were ordinary, nonshifted evaluations
associated with Newton-Krylov iteration.

Despite the much larger number of shifted function evalua-
tions, the total time spent in these evaluations was just 76
seconds (13% of total runtime), compared to 483 seconds
(81% of total runtime) spent in nonshifted function eval-
uations. This confirms the significant efficiency improve-
ments made in recycling information from the nonshifted
evaluations when computing shifted evaluations.

The next most significant expense was the preconditioner
factorisation. CVODE invokes the user code for factori-
sation whenever the stepsize (and hence the value of γ
in equation (10)) changes. As a result, the factorisation
routine was called 29 times, for a total cost of 27 seconds,
or 4% of the total runtime. The only other significant
expense was the application of the preconditioner, which
occurs once for every Newton-Krylov iteration and cost 4
seconds (1% of total runtime) overall. The remaining 1% of
runtime was associated with data structure and function
call overheads. We note that all of these expenses were
incurred in user code – there was no significant overhead
associated with any CVODE code.

We emphasise that this problem could not be solved using
a direct factorisation of the full Jacobian matrix on the
test machine, since the memory required for the matrix
and its factorisation exceeds the capacity of the machine.
In comparison, using the preconditioned method of lines,
the problem is comfortably solved in just a few minutes.

6. CONCLUSIONS

In this paper we have presented a banded precondi-
tioner for the nonlinear two-sided space-fractional diffusion
equation that allows for its efficient solution using the
method of lines with backward differentiation formulas and
Jacobian-free Newton-Krylov iteration. The advantage of
our approach is that it avoids the need to factorise a
dense Jacobian matrix that would otherwise be required
using standard direct solution approaches. As a result,
we are able to solve problems on computational domains
involving many thousands of nodes, which would would be
infeasible to do using direct factorisation methods.

Numerical experiments illustrate that our preconditioner
performs very well, allowing the initial value problem
solver to use large stepsizes, and thereby integrate to the
final time with minimal function evaluations.

In future work we will extend these ideas to problems in
higher spatial dimensions, and to more complex problems.
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